Marketing predictivo
retos de futuro en la implementación y uso de algoritmos e inteligencia artificial
Palabras clave:
Marketing predictivo, algoritmos, inteligencia artificialResumen
Este artículo científico en forma de ensayo científico aborda la importancia del marketing predictivo como un enfoque estratégico que utiliza algoritmos e inteligencia artificial para predecir el comportamiento del consumidor y optimizar las campañas de marketing en tiempo real. Sin embargo, la implementación del marketing predictivo presenta desafíos para los gerentes de marketing, incluida la falta de habilidades necesarias para manejar algoritmos e inteligencia artificial, la necesidad de una gestión precisa de los datos y la preocupación por la privacidad del consumidor. Este estudio proporciona información relevante a los gerentes de marketing que buscan implementar el marketing predictivo en sus campañas con el fin de ayudarlos a superar los desafíos y lograr el éxito en sus estrategias de marketing.
This scientific paper formatted in the form of scientific essay addresses the importance of predictive marketing as a strategic approach that uses algorithms and artificial intelligence to predict consumer behavior and optimize marketing campaigns in real time. However, the implementation of predictive marketing presents challenges for marketing managers, including the lack of skills needed to handle algorithms and artificial intelligence, the need for accurate data management, and concern for consumer privacy. This study provides relevant information to marketing managers looking to implement predictive marketing in their campaigns in order to help them overcome challenges and achieve success in their marketing strategies.
Descargas
Citas
Alantari, H. J., Currim, I. S., Deng, Y., & Singh, S. (2022). An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews. International Journal of Research in Marketing, 39(1). https://doi.org/10.1016/j.ijresmar.2021.10.011
Avinash, V. (2021). The Role of AI in Predictive Marketing Using Digital Consumer Data. Dogo Rangsang Research Journal, 11(6).
Chou, P., Chuang, H. H. C., Chou, Y. C., & Liang, T. P. (2022). Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning. European Journal of Operational Research, 296(2). https://doi.org/10.1016/j.ejor.2021.04.021
Kotras, B. (2020). Mass personalization: Predictive marketing algorithms and the reshaping of consumer knowledge. Big Data and Society, 7(2). https://doi.org/10.1177/2053951720951581
Mack, N., Woodsong, C., MacQueen, K. M., Guest, G., & Namey, E. (2011). Qualitative research metodology: a data collector’s field guide. In Climate Change 2013 - The Physical Science Basis.
Naz, H., & Kashif, M. (2024). Artificial intelligence and predictive marketing: an ethical framework from managers’ perspective. Spanish Journal of Marketing - ESIC. https://doi.org/10.1108/SJME-06-2023-0154
Ramos-Galarza, C., Bolaños-Pasquel, M., & Cruz-Cárdenas, J. (2024). Virtual Reality as a Learning Mechanism: Experiences in Marketing. Smart Innovation, Systems and Technologies, 344. https://doi.org/10.1007/978-981-99-0333-7_43
Santo, A. do E. (1992). Delineamentos de metodologia científica. Edições Loyola.
Silva, C. N. N. da, & Porto, M. D. (2016). Metodologia Científica Descomplicada. In Metodologia Científica.
Silva, V. C., Gorgulho, B., Marchioni, D. M., Araujo, T. A. de, Santos, I. de S., Lotufo, P. A., & Benseñor, I. M. (2022). Clustering analysis and machine learning algorithms in the prediction of dietary patterns: Cross-sectional results of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Journal of Human Nutrition and Dietetics, 35(5). https://doi.org/10.1111/jhn.12992
Überwimmer, M., Frankus, E., Casati, L., Stack, S., Kincl, T., & Závodná, L. S. (2024). The AI Evolution in Marketing and Sales: How Social Design Thinking Techniques Can Boost Long-Term AI Strategies in Companies and Regions. Smart Innovation, Systems and Technologies, 344. https://doi.org/10.1007/978-981-99-0333-7_2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Luciano Augusto Toledo, Abayomi Diana Benone Calazans Muranyi Ki
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos publicados na Práticas em Contabilidade e Gestão pertencem aos autores, que concedem à Universidade Presbiteriana Mackenzie os direitos de publicação do conteúdo. Após a aprovação do artigo, os autores concedem à revista o direito da primeira publicação.