Marketing predictivo

retos de futuro en la implementación y uso de algoritmos e inteligencia artificial

Autores/as

  • Luciano Augusto Toledo Universidade Presbiteriana Mackenzie
  • Abayomi Diana Benone Calazans Muranyi Ki Universidade Presbiteriana Mackenzie

Palabras clave:

Marketing predictivo, algoritmos, inteligencia artificial

Resumen

Este artículo científico en forma de ensayo científico aborda la importancia del marketing predictivo como un enfoque estratégico que utiliza algoritmos e inteligencia artificial para predecir el comportamiento del consumidor y optimizar las campañas de marketing en tiempo real. Sin embargo, la implementación del marketing predictivo presenta desafíos para los gerentes de marketing, incluida la falta de habilidades necesarias para manejar algoritmos e inteligencia artificial, la necesidad de una gestión precisa de los datos y la preocupación por la privacidad del consumidor. Este estudio proporciona información relevante a los gerentes de marketing que buscan implementar el marketing predictivo en sus campañas con el fin de ayudarlos a superar los desafíos y lograr el éxito en sus estrategias de marketing.

 

This scientific paper formatted in the form of scientific essay addresses the importance of predictive marketing as a strategic approach that uses algorithms and artificial intelligence to predict consumer behavior and optimize marketing campaigns in real time.  However, the implementation of predictive marketing presents challenges for marketing managers, including the lack of skills needed to handle algorithms and artificial intelligence, the need for accurate data management, and concern for consumer privacy. This study provides relevant information to marketing managers looking to implement predictive marketing in their campaigns in order to help them overcome challenges and achieve success in their marketing strategies.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luciano Augusto Toledo, Universidade Presbiteriana Mackenzie

Doctor en administración y profesor de la Universidade Presbiteriana Mackenzie

Abayomi Diana Benone Calazans Muranyi Ki , Universidade Presbiteriana Mackenzie

Bachiller en Administracion

Citas

Alantari, H. J., Currim, I. S., Deng, Y., & Singh, S. (2022). An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews. International Journal of Research in Marketing, 39(1). https://doi.org/10.1016/j.ijresmar.2021.10.011

Avinash, V. (2021). The Role of AI in Predictive Marketing Using Digital Consumer Data. Dogo Rangsang Research Journal, 11(6).

Chou, P., Chuang, H. H. C., Chou, Y. C., & Liang, T. P. (2022). Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning. European Journal of Operational Research, 296(2). https://doi.org/10.1016/j.ejor.2021.04.021

Kotras, B. (2020). Mass personalization: Predictive marketing algorithms and the reshaping of consumer knowledge. Big Data and Society, 7(2). https://doi.org/10.1177/2053951720951581

Mack, N., Woodsong, C., MacQueen, K. M., Guest, G., & Namey, E. (2011). Qualitative research metodology: a data collector’s field guide. In Climate Change 2013 - The Physical Science Basis.

Naz, H., & Kashif, M. (2024). Artificial intelligence and predictive marketing: an ethical framework from managers’ perspective. Spanish Journal of Marketing - ESIC. https://doi.org/10.1108/SJME-06-2023-0154

Ramos-Galarza, C., Bolaños-Pasquel, M., & Cruz-Cárdenas, J. (2024). Virtual Reality as a Learning Mechanism: Experiences in Marketing. Smart Innovation, Systems and Technologies, 344. https://doi.org/10.1007/978-981-99-0333-7_43

Santo, A. do E. (1992). Delineamentos de metodologia científica. Edições Loyola.

Silva, C. N. N. da, & Porto, M. D. (2016). Metodologia Científica Descomplicada. In Metodologia Científica.

Silva, V. C., Gorgulho, B., Marchioni, D. M., Araujo, T. A. de, Santos, I. de S., Lotufo, P. A., & Benseñor, I. M. (2022). Clustering analysis and machine learning algorithms in the prediction of dietary patterns: Cross-sectional results of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Journal of Human Nutrition and Dietetics, 35(5). https://doi.org/10.1111/jhn.12992

Überwimmer, M., Frankus, E., Casati, L., Stack, S., Kincl, T., & Závodná, L. S. (2024). The AI Evolution in Marketing and Sales: How Social Design Thinking Techniques Can Boost Long-Term AI Strategies in Companies and Regions. Smart Innovation, Systems and Technologies, 344. https://doi.org/10.1007/978-981-99-0333-7_2

Publicado

2024-05-20

Cómo citar

Toledo, L. A., & Ki , A. D. B. C. M. (2024). Marketing predictivo: retos de futuro en la implementación y uso de algoritmos e inteligencia artificial. Práticas Em Contabilidade E Gestão, 11(4). Recuperado a partir de http://editorarevistas.mackenzie.br/index.php/pcg/article/view/16962