Validation and review of grouping of Brazilian cities in degrees-days of heating and cooling

Authors

DOI:

https://doi.org/10.5935/cadernospos.v23n1p70-90

Keywords:

Climatic change; Degree days of heating and cooling; Grouping; Climatic classification.

Abstract

Estimating energy consumption for environment conditioning is a key point in determining the energy consumption of a building. The energy required for air conditioning can be used to quantify the climatic rigor of a given location. However, Brazil does not have technical standards and/or zoning established by a calculation method for the definition of degrees-days. This paper aims to present the update of the proposal of zoning based on degree-day, elaborated by Stensjö, Ferreira e Loura (2017), from data from 317 Brazilian cities using the Climatological Normals (1961-1990). The classification of the new set of Climatological Normals for the period from 1981 to 2010 undertests adjustments in the process of defining the base temperature for degrees-days of heating. For the development, the proposed method and the same references used by Stensjö, Ferreira and Loura (2017) were followed to establish the base temperatures, calculations of degree-days and grouping. Regarding classification, the article investigates three possibilities to identify the most appropriate one for the new database. The results demonstrated the robustness of the method, allowed refinement of the classification process, as well as the identification of energy demand trends for Brazilian homes.

Downloads

Author Biography

Rejane Magiag Loura, Universidade Federal de Minas Gerais

Graduated in Architecture and Urbanism from the Federal University of Minas Gerais (2003), Master's and Doctorate in Nuclear Sciences and Techniques from the Federal University of Minas Gerais (2006 and 2012). She is currently an associate professor at the Federal University of Minas Gerais working in the Undergraduate courses in Architecture and Urbanism and in the Graduate Program in Built Environment and Sustainable Heritage. She coordinates the COMPasso UFMG Extension Program. The main topic of interest is the computer-aided decision process for an integrated approach to energy efficiency, environmental comfort and construction technology, with a view to building and city resilience in the face of climate change.

References

ASSIS, E. S. de. Método integrado de análise climática para arquitetura aplicado à cidade de Belo Horizonte, MG. In: VI ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO E III ENCONTRO LATINO-AMERICANO SOBRE CONFORTO NO AMBIENTE CONSTRUÍDO (ENCAC/ELACAC), 2001, São Pedro. Anais do VI Encontro Nacional de Conforto no Ambiente Construído/ III Encontro Latino-Americano de Conforto no Ambiente Construído, São Paulo,

ANTAC, 2001. 1 CD-ROM.

BAI, L. et al. A new approach to develop a climate classification for building energy efficiency addressing Chinese climate characteristics. Energy, v. 195, p. 1-14, 2020. DOI 10.1016/j.energy.2020.116982

BAI, L.; WANG, S. Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China. Energy, v. 170. p. 709-719, 2019. DOI 10.1016/j.energy.2018.12.187

BERARDI, U.; JAFARPUR, P. Assessing the impact of climate change on building heating and cooling energy demand in Canada. Renewable and Sustainable Energy Reviews, v. 121, p. 1-12, 2020. DOI 10.1016/j.rser.2019.109681

D’AMICO, A. et al. Building energy demand assessment through heating degree days: the importance of a climatic dataset. Applied Energy, v. 242, p. 1285-1306, 2019. DOI 10.1016/j.apenergy.2019.03.167

DAY, T. Degree-days: theory and application TM4. London: The Chartered Institution of Building Services Engineers (CIBSE), 2006.

DEAR, R. J. de.; BRAGER, G. S. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, v. 34, n. 6, p. 549-561, July 2002. DOI 10.1016/S0378-7788(02)00005-1 ELETROBRAS. Pesquisa de posse e hábitos de uso de equipamentos elétricos na classe residencial. Rio de Janeiro: Procel, 2019. Disponível em: https://q.eletrobras.com/pt/Paginas/PPH-2019.aspx. Acesso em: 2 fev. 2023.

GIVISIEZ, G. H. N.; OLIVEIRA, E. L. de. (org.). Demanda futura por moradias: demografia, habitação e mercado. Niterói, RJ: Universidade Federal Fluminense, 2018.

GIVONI, B. Comfort, climate analysis and building design guidelines. Energy and Buildings, v. 18, n. 1, p. 11-23, 1992. DOI 10.1016/0378-7788(92)90047-K

HEIDARI, S.; SHARPLES, S. A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings, v. 34, n. 6, p. 607-614, 2002. DOI 10.1016/S0378-7788(02)00011-7

INSTITUTO NACIONAL DE METEOROLOGIA. Normais Climatológicas do Brasil: 1961-1990. Brasília, DF: INMET, 2009. p. 465.

INSTITUTO NACIONAL DE METEOROLOGIA. Normais Climatológicas do Brasil: 1981-2010. Brasília, DF: INMET, 2018.

INVIDIATA, A. et al. Análise de agrupamento de 411 cidades brasileiras baseado em indicadores de desempenho de edificações residenciais naturalmente ventiladas. In: XVI ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE

CONSTRUÍDO, 2016, São Paulo. Anais [...]. São Paulo, ANTAC, 2016.

KHEDARI, J. et al. Thailand ventilation comfort chart. Energy and Buildings, v. 32, n. 3, p. 245-249, 2000. DOI 10.1016/S0378-7788(00)00050-5

LOURA, R. M.; FERREIRA, C. C.; STENSJÖ, I. P. Análise comparativa da classificação e agrupamento das cidades brasileiras em graus-dia de aquecimento e resfriamento a partir das Normais Climatológicas 1961-1990 e 1981-2010. In: CONGRESSO LUSO-BRASILEIRO PARA O PLANEJAMENTO URBANO REGIONAL, INTEGRADO E SUSTENTÁVEL (PLURIS 2020), 9. Águas de Lindoia: [s.n.], 2021.

PEREIRA, I. M.; ASSIS, E. S. Avaliação de modelos de índices adaptativos para uso no projeto arquitetônico bioclimático. Ambiente Construído, v. 10, n. 1, p. 31-51, 2010. DOI 10.1590/S1678-86212010000100002

ROAF, S.; CRICHTON, D.; NICOL, F. Adapting buildings and cities for climate change: a 21st century survival guide. 2nd ed. UK: Routledge, 2009.

RORIZ, M. Segunda proposta de revisão do zoneamento bioclimático do Brasil. São Carlos: Associação Nacional de Tecnologia do Ambiente Construído (ANTAC), 2012.

STENSJÖ, I. P. FERREIRA, C. C.; LOURA, R. M. Classificação e agrupamento das cidades brasileiras em graus-dia de aquecimento e resfriamento: 1960 a 2013. Urbe – Revista Brasileira de Gestão Urbana, v. 9, n. 1, p. 286-300, 2017.

DOI 10.1590/2175-3369.009.SUPL1.AO03

UNITED NATIONS. World population prospects: the 2012 revision. New York, 2013. Disponível em: https://www.un.org/en/development/desa/publications/world-population-prospects-the-2012-revision.html#:~:text=The%20report%2C%20World%20Population%20Prospects,to%201.8%20billion%20in%20205 Acesso em: 2 fev. 2023.

VECCHI, R. et al. Application of the adaptive model proposed by ASHRAE 55 in the Brazilian climate context: raising some issues. In: 8TH WINDSOR CONFERENCE.London, 2014. p. 13.

Published

2023-06-30

How to Cite

CARVALHO FERREIRA, C.; MAGIAG LOURA, R. Validation and review of grouping of Brazilian cities in degrees-days of heating and cooling. Graduate Journal in Architecture and Urbanism, [S. l.], v. 23, n. 1, p. 70–90, 2023. DOI: 10.5935/cadernospos.v23n1p70-90. Disponível em: http://editorarevistas.mackenzie.br/index.php/cpgau/article/view/15475. Acesso em: 4 apr. 2025.

Issue

Section

Papers

Most read articles by the same author(s)