Reliability of the Factor Index of the Wais-III Adapted for the Brazilian Population
Main Article Content
Abstract
A new approach is presented for the assessment of the score reliability of psychological instruments by means of orthogonalization of the latent variables and the estimation of the corresponding coefficients of composite reliability. The present study used this approach to investigate the reliability of the Wais-III index scores, adapted for the Brazilian population. Various models were tested: the one with the best fit was the bifactor model with one general factor and four specific factors, corresponding to the Wais-III index scores. For the general factor, high reliability coefficients were found (composite reliability [CR] = .96; hierarchical omega [?] = .94); yet the specific dimensions, after controlling the effect of the general dimension, showed low reliability coefficients (CR ? .35; ? ? .14). On basis of these findings, extreme caution is recommended concerning the interpretation of the Wais-III index scores, since most of the variance of those scores seems to be related to the general dimension.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright to articles published in The Journal Of Psychology: Theory and Practice belongs to the authors, who grant Mackenzie Presbyterian University the not exclusive rights to publish the content.
References
Canivez, G. L. (2013). Incremental validity of WAIS-IV factor index scores: Relationships with WIAT-II and WIAT-III subtest and composite scores. Psychological Assessment, 25(2), 484-495.
Canivez, G. L. (2014). Construct validity of the WISC-IV with a referred sample: Direct versus indirect hierarchical structures. School Psychology Quarterly, 29(1), 38–51.
Donders, J., Tulsky, D. S., & Zhu, J. (2001). Criterion validity of new WAIS–III subtest scores after traumatic brain injury. Journal of the International Neuropsychological Society, 7(7), 892-898.
Figueiredo, V. L. M., & Nascimento, E. (2007). Desempenhos nas duas tarefas do subteste dígitos do WISC-III e do WAIS-III. Psicologia: Teoria e Pesquisa, 23 (3), 313-318.
Fisher, D. C., Ledbetter, M. F., Cohen, N. J., Marmor, D., & Tulsky, D. S. (2000). WAIS-III and WMS-III profiles of mildly to severely brain-injured patients. Applied Neuropsychology, 7(3), 126-132.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equations models with unobservable variables and measurement error. Journal of Marketing, 18(1), 39-50.
Gignac, G. E. (2005). Revisiting the factor structure of the WAIS-R: insights through nested factor modeling. Assessment, 12(3), 320-329.
Gignac, G. E. (2006). The WAIS-III as a nested factor model: a useful alternative to the more conventional oblique and higher-order models. Journal of Individual Differences, 27(2), 73-86.
Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV. Multivariate Behavioral Research, 48, 639-662.
Golay, P., & Lecerf, T. (2011). Orthogonal higher order structure and Confirmatory Factor Analysis of the French Wechsler Adult Intelligence Scale (WAIS–III). Psychological Assessment, 23(1), 143–152.
Kanai, C., Tani, M., Hashimoto, R., Yamada, T., Ota, H., Watanabe, H., Iwanami, A., & Kato, N. (2012). Cognitive profiles of adults with Asperger’s disorder, high-functioning autism, and pervasive developmental disorder not otherwise specified based on the WAIS-III. Research in Autism Spectrum Disorders, 6(1), 58–64.
Nascimento, E. (2004). Manual para administração e avaliação do WAIS-III adaptado para a população brasileira. São Paulo: Casa do Psicólogo.
Nascimento, E., & Flores-Mendonza, C. E. (2007). WISC-III e WAIS-III na avaliação da inteligência de cegos. Psicologia em Estudo,12 (3), 627-633.
McDonald, R. P. (1999). Test Theory: A Unified Treatment. Mahwah, NJ: Erlbaum.
Nelson, J. M., Canivez, G. L., & Watkins, M. W. (2013). Structural and incremental validity of the Wechsler Adult Intelligence Scale – Fourth Edition with a clinical sample. Psychological Assessment, 25(2), 618-630.
Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia research, 72(1), 29-39.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667-696.
Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544–559.
Reise, S. P., Scheines R., Widaman, K. F., & Haviland, M. G. (2013). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73(1), 5–26.
Rios, J., & Wells, C. (2014). Validity evidence based on internal structure. Psicothema, 26(1), 108-116.
Schneider, J. W., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (3rd ed., pp. 99-144). New York, NY: Guilford Press.
Spek, A. A., Scholte, E. M., & van Berckelaer-Onnes, I. A. (2008). Brief report: The use of WAIS-III in adults with HFA and Asperger syndrome. Journal of Autism and Developmental Disorders, 38(4), 782-787.
Valentini, F. & Damásio, B. F. (2014). Variância média extraída e confiabilidade composta: indicadores de precisão. Manuscrito submetido para publicação.