RELATIONSHIP BETWEEN MUSICAL AUDITORY REASONING AND INTELLIGENCE

Main Article Content

Fernando Pessotto
Ricardo Primi
Lucas de Francisco Carvalho
Fabiano Koich Miguel

Abstract

The present study aimed to investigate if the Musical Auditory Reasoning Test (RAu) evaluates a specific ability related to auditory reasoning (Ga), or if the instrument is presented as a test for fluid intelligence (Gf) or specific knowledge (Gkn)


assessment. In addition, we sought to verify the RAu’s capacity to differentiate individuals into different levels of musical ability. Three groups – musicians (N = 7), amateur musicians (N = 22) and lay in music (N = 20) – aged between 18 and 59 years, with 57.1% males, answered the tests. Moderate significant correlations were found between Analogies 2 with verbal reasoning and spatial reasoning tasks (.36 and .37 respectively). The three groups differed significantly in measures according to the level of music experience. The results suggest that the auditory processing and reasoning are related constructs, and that RAu is able to discriminate people according to the level of musical ability.

Downloads

Download data is not yet available.

Article Details

Section
Artigos

References

Almeida, L. S., Guisande, M. A., Primi, R., & Ferreira, A. (2008). Construto e medida da inteligência: contributos da abordagem fatorial. In: Candeias, A., Almeida, L., Roazzi, A., & Primi, P. Inteligência: Definição e medida na confluência de múltiplas concepções. São Paulo: Casa do Psicólogo, 1-20.

Billhartz, T. D., Bruhn, R. A., & Olson, J. E. (1999). The Effect of Early Music Training on Child Cognitive Development. Journal of Applied Developmental Psychology, New York, 20 (4), 615-636.

Carroll, J. B. (1993). Human cognitive abilities: a survey of factor-analytic studies. New York: Cambridge University Press, 832 p.

Carroll, J. B. (1997). The Three-Stratum Theory of Cognitive Abilities. In: Flanagan, D. P., Genshaft, J. L., & Harrison, P. L. (Org), Contemporary intellectual assessment: theories, tests and issues. New York: Guilford Press, 122-130.

Cunha, T. F. (2007). Desenvolvimento de um Teste de Processamento Auditivo com estímulos musicais. 2007. 109 f. Dissertação de mestrado, Programa de Pós-Graduação Stricto Sensu, Universidade São Francisco, Itatiba.

Cunha, T., Primi, R., Berberian, A., Ambiel, R. A. M., Pessotto, F., Miguel, F. K. (2006). Teste de Raciocínio Auditivos Musical (RAu), Itatiba: Laboratório de Avaliação Psicológica e Educacional – LabAPE, Universidade São Francisco.

Dowling, J. (1999). The development of music perception and cognition. In: Deutsch, D. (Org.), The Psychology of Music New York: Academic Press. 603-625.

Engle, R. W., Tuholski, S. W., Laughlin, J., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable model approach. Journal of Experimental Psychology: General, Washington, 128, 309-331.

Haavisto, M. L., Lehto, J. E. (2004). Fluid/spatial and crystallised intelligence in relation to domain-specific working memory: a latent-variable approach. Learning and Individual Differences, Columbus, 15, 1-21.

Helmbold, N., Rammayer, T., & Altenmüller, E. (2005). Diferences in Primary Mental Abilities between Musicians and Nonmusicians. Journal of Individual Differences, Gottingen, 26, (2), 74-85.

Hemphill, J. F. (2003). Interpreting the magnitudes of correlation coefficients. American Psychologist, Washington, 58, 78-79.

Joanisse, M. F. & Gati, J. S. (2003). Overlapping neural regions for processing rapid temporal cues in speech and nonspeech signals. NeuroImage, 19 (1), 64–79.

Lathroum, L. (2011). The Role of Music Perception in Predicting Phonological Awareness in Five- and Six-Year-Old Children. Dissertação—[s.l.] University of Miami.

Mcgrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research, Intelligence, Norwood, 37 (1), 1-10.

Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical disorders. The Montreal Battery of Evaluation of Amusia. Annals of the New York Academy of Sciences, 999, 58-75.

Primi, R. (1998). Desenvolvimento de um instrumento informatizado para avaliação do raciocínio analítico, 1998. 156 f. Tese de Doutorado. Instituto de Psicologia, Universidade de São Paulo, São Paulo.

Primi, R. (2002). Inteligência Fluida: definição fatorial, cognitiva e neuropsicológica. Ribeirão Preto, Paidéia, 12(23), 57-77.

Primi, R. (2003). Inteligência nos Modelos Teóricos e nos Instrumentos de Medidas. Avaliação Psicológica, Itatiba, 2, 67-77.

Primi, R. & Almeida, L. S. (2002). BPR-5 – Bateria de Provas de Raciocínio: Manual Técnico. São Paulo: Casa do Psicólogo, 48 p.

Primi, R. & Almeida, L. (2002). Inteligência geral ou fluida: desenvolvimentos recentes na sua concepção. Sobredotação, Braga, 3, 127-144.

Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15, 511–514.

Schellenberg, E. G. & Moreno, S. (2009). Music lessons, pitch processing, and g. Psychology of Music. Toronto, 38 (2), 209-221.

Schönwiesner, M., Rübsamen, R., & Von Cramon, D. Y. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience, 22 (6), 1521–1528.

Verguts, T. & De Boeck, P. (2002). On the correlation between working memory capacity and performance on intelligence tests. Learning and Individual Differences, Washington, 13, 37-55.

Vigil-Colet, A., Perez-Olle, J., & Fernandez, M. (1997). The relationships of basic information processing measures with fluid and crystallized intelligence. Personality and Individual Differences, Washington, 23, 55-65.

Wessinger, C. M. et al. (2001). Hierarchical Organization of the Human Auditory Cortex Revealed by Functional Magnetic Resonance Imaging. Journal of Cognitive Neuroscience, 13 (1), 1–7.