Digital phenotyping and personality disorders: A necessary relationship in the digital age

Main Article Content

Lucas de Francisco Carvalho
Giselle Pianowski

Abstract

Digital phenotyping refers to the in-situ quantification of the human phenotype using data from personal digital devices. We argue in favor of using digital phenotyping for mental health, particularly to the personality disorders (PD). We undertake a literature review to ground three main issues, i.e., applications, implications, and challenges in harnessing digital phenotyping for PD. The literature presents an amount of studies showing that the PD field can benefit from digital phenotyping. We present and discuss some key points supporting the envisioned advances in applying the digital phenotyping to PD, as improvements on assessment, research, PD taxonomy, and, ultimately, on interventions. Despite the prospect progress with this integration, we have discussed many challenges that need to be overcome. While overcomes the challenges, we expect greater practical impact as result of applying digital phenotyping to PD, from professional, patient and community perspectives. The main expectation is to support psychiatric models on prediction over emergency.

Downloads

Download data is not yet available.

Article Details

Section
Psychological Assessment

References

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders(DSM-5) (5th Edition). Washington, DC: American Psychiatry Association.

Barrett, P. M., Steinhubl, S. R., Muse, E. D., & Topol, E. J. (2017). Digitising the mind. The

Lancet, 13(389): 1877. doi:10.1016/S0140-6736(17)31218-7

Ben-Zeev, D., Brian, R., Wang, R., Wang, W., Campbell, A. T., Aung, M. S. H. … Scherer, E.

A. (2017). CrossCheck: Integrating self-report, behavioral sensing, and smartphone use to identify digital indicators of psychotic relapse. Psychiatric Rehabilitation,

(3), 266–275. doi:10.1037/prj0000243

Carpenter, C. J. (2012). Narcissism on Facebook: Self-promotional and anti-social behavior. Personality and individual differences, 52(4), 482–486. doi:10.1016/j.

paid.2011.11.011

Carvalho L. F., & Pianowski, G. (2017). Pathological personality traits assessment using

Facebook: Systematic review and meta-analyses. Computers in Human Behavior, 71,

–317. doi:10.1016/j.chb.2017.01.061

Gehanno, J. F., Rollin, L., & Darmoni, S. (2013). Is the coverage of Google Scholar enough

to be used alone for systematic reviews. BMC Med Inform Decis Mak, 9, 13–17.

doi:10.1186/1472-6947-13-7

Gnambs, T., & Appel, M. (2017). Narcissism and social networking behavior: A metaanalysis. Journal of Personality, 86(2), 200–212. doi: 10.1111/jopy.12305

Hird, N., Ghosh, S., & Kitano, H. (2016). Digital health revolution: Perfect storm or perfect opportunity for pharmaceutical R&D? Drug discovery today, 21(6), 900-911.

doi:10.1016/j.drudis.2016.01.010

Hopwood, C. J., & Bleidorn, W. (2018). Stability and change in personality and personality

disorders. Curr Opin Psychol, 21, 6–10. doi:10.1016/j.copsyc.2017.08.034

Inkster, B., Stillwell, D., Kosinski, M., & Jones, P. (2016). A decade into Facebook: Where

is psychiatry in the digital age? The Lancet Psychiatry, 3(11), 1087–1090.

Jain, S. H., Powers, B. W., Hawkins, J. B., & Brownstein, J. S. (2015). The digital phenotype. Nature biotechnology, 33(5), 462–463. doi:10.1038/nbt.3223

Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R.M. …

Zimmerman, M. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP):

A dimensional alternative to traditional nosologies. Journal of abnormal psychology,

(4), 454–477. doi:10.1037/abn0000258

Liu, D., & Baumeister, R. F. (2016). Social networking online and personality of self-

-worth: A meta-analysis. Journal of Research in Personality, 64, 79–89. doi:10.1016/j.

jrp.2016.06.024

McCain, J. L., Borg, Z. G., Rothenberg, A. H., Churillo, K. M., Weiler, P., & Campbell. W. K.

(2016). Personality and selfies: Narcissism and the Dark Triad. Computers in Human

Behavior, 64, 126–133. doi:10.1016/j.chb.2016.06.050

Millon, T. (2016). What is a personality disorder? Journal of personality disorders,

(3), 289–306.

Mohr, D. C., Weingardt, K. R., Reddy, M., Schueller, S. M. (2017). Three problems with

current digital mental health research … and three things we can do about them.

Psychiatric Services, 68(5), 427–429. doi:10.1176/appi.ps.201600541

Moon, J. H., Lee, E., Lee, J. A., Choi, T. R., & Sung, Y. (2016). The role of narcissism

in self-promotion on Instagram. Personality and Individual Differences, 101, 22–25.

doi:10.1016/j.paid.2016.05.042

Oldham, J. M. (2017). DSM Models of Personality Disorders. Curr Opin Psychol, 21, 86–88.

Onnela, J. P., & Rauch, S. L. (2016). Harnessing smartphone-based digital phenotyping

to enhance behavioral and mental health. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 41(7), 1691. doi:10.1038/

npp.2016.7

Paris, J. A. (2015). A concise guide to personality disorders. Washington, DC: American

Psychiatric Association.

Preotiuc-Pietro, D., Carpenter, J., Giorgi, S., & Ungar, L. (2016). Studying the dark triad

of personality through Twitter behavior. In Proceedings of the 25th ACM International

on Conference on Information and Knowledge Management, 761–770.

Saeb, S., Cybulski, T. R., Kording, K. P., & Mohr, D. C. (2017). Scalable passive sleep

monitoring using mobile phones: Opportunities and obstacles. Journal of Medical

Internet Research, 19(4), e118. doi:10.2196/jmir.6821

Shariff, S. Z., Bejaimal, S. A., Sontrop, J. M., Iansavichus, A. V., Haynes, R. B., Weir,

M. A., & Garg, A. X. (2013). Retrieving clinical evidence: a comparison of PubMed and Google Scholar for quick clinical searches. J Med Internet Res, 15(8), e164. doi:10.2196/jmir.2624

Skodol, A. E. (2012). Personality Disorders in DSM-5. Annu Rev Clin Psychol, 8(1), 317–344.

Torous, J., & Nebeker, C. (2017) Navigating ethics in the digital age: Introducing Connected and Open Research Ethics (CORE), a tool for researchers and institutional review boards. Journal of Medical Internet Research, 19(2), e38. doi:10.2196/jmir.6793

Torous, J., Firth, J., Mueller, N., Onnela, J. P., & Baker, J. T. (2017). Methodology and

Reporting of Mobile Heath and Smartphone Application Studies for Schizophrenia.

Harvard Review of Psychiatry, 25(3), 146–154. doi:10.1097/HRP.0000000000000133

Torous, J., Kiang, M. V., Lorme, J., & Onnela, J.P. (2016). New tools for new research in

psychiatry: A scalable and customizable platform to empower data driven smartphone research. JMIR Mental Health, 3(2), e16. doi:10.2196/mental.5165

Torous, J., Onnela, J. P., & Keshavan, M. (2017). New dimensions and new tools to realize

the potential of RDoC: Digital phenotyping via smartphones and connected devices.

Translational Psychiatry, 7(3), e1053. doi:10.1038/tp.2017.25

Torous, J., & Roberts, L. W. (2017). Needed innovation in digital health and smartphone applications for mental health transparency and trust. JAMA Psychiatry, 74(5),

–438. doi:10.1001/jamapsychiatry.2017.0262

Venkatesh, S., & Christensen, H. (2017). Using life’s digital detritus to feed discovery. The

lancet psychiatry, 4(3), 181. doi:10.1016/S2215-0366(16)30351-0

Wiederhold, B. K. (2016). Using your digital phenotype to improve your mental

health. Cyberpsychology, Behavior, and Social Networking, 19(7), 419. doi:10.1089/

cyber.2016.29039.bkw

Winter, J. C. F., Zadpoor, A. A., & Dodou, D. (2014). The expansion of Google Scholar versus Web of Science: A longitudinal study. Scientometrics, 98(2), 1547–1565.

doi:10.1007/s11192-013-1089-2