Digital phenotyping and personality disorders: A necessary relationship in the digital age
Main Article Content
Abstract
Digital phenotyping refers to the in-situ quantification of the human phenotype using data from personal digital devices. We argue in favor of using digital phenotyping for mental health, particularly to the personality disorders (PD). We undertake a literature review to ground three main issues, i.e., applications, implications, and challenges in harnessing digital phenotyping for PD. The literature presents an amount of studies showing that the PD field can benefit from digital phenotyping. We present and discuss some key points supporting the envisioned advances in applying the digital phenotyping to PD, as improvements on assessment, research, PD taxonomy, and, ultimately, on interventions. Despite the prospect progress with this integration, we have discussed many challenges that need to be overcome. While overcomes the challenges, we expect greater practical impact as result of applying digital phenotyping to PD, from professional, patient and community perspectives. The main expectation is to support psychiatric models on prediction over emergency.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright to articles published in The Journal Of Psychology: Theory and Practice belongs to the authors, who grant Mackenzie Presbyterian University the not exclusive rights to publish the content.
References
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders(DSM-5) (5th Edition). Washington, DC: American Psychiatry Association.
Barrett, P. M., Steinhubl, S. R., Muse, E. D., & Topol, E. J. (2017). Digitising the mind. The
Lancet, 13(389): 1877. doi:10.1016/S0140-6736(17)31218-7
Ben-Zeev, D., Brian, R., Wang, R., Wang, W., Campbell, A. T., Aung, M. S. H. … Scherer, E.
A. (2017). CrossCheck: Integrating self-report, behavioral sensing, and smartphone use to identify digital indicators of psychotic relapse. Psychiatric Rehabilitation,
(3), 266–275. doi:10.1037/prj0000243
Carpenter, C. J. (2012). Narcissism on Facebook: Self-promotional and anti-social behavior. Personality and individual differences, 52(4), 482–486. doi:10.1016/j.
paid.2011.11.011
Carvalho L. F., & Pianowski, G. (2017). Pathological personality traits assessment using
Facebook: Systematic review and meta-analyses. Computers in Human Behavior, 71,
–317. doi:10.1016/j.chb.2017.01.061
Gehanno, J. F., Rollin, L., & Darmoni, S. (2013). Is the coverage of Google Scholar enough
to be used alone for systematic reviews. BMC Med Inform Decis Mak, 9, 13–17.
doi:10.1186/1472-6947-13-7
Gnambs, T., & Appel, M. (2017). Narcissism and social networking behavior: A metaanalysis. Journal of Personality, 86(2), 200–212. doi: 10.1111/jopy.12305
Hird, N., Ghosh, S., & Kitano, H. (2016). Digital health revolution: Perfect storm or perfect opportunity for pharmaceutical R&D? Drug discovery today, 21(6), 900-911.
doi:10.1016/j.drudis.2016.01.010
Hopwood, C. J., & Bleidorn, W. (2018). Stability and change in personality and personality
disorders. Curr Opin Psychol, 21, 6–10. doi:10.1016/j.copsyc.2017.08.034
Inkster, B., Stillwell, D., Kosinski, M., & Jones, P. (2016). A decade into Facebook: Where
is psychiatry in the digital age? The Lancet Psychiatry, 3(11), 1087–1090.
Jain, S. H., Powers, B. W., Hawkins, J. B., & Brownstein, J. S. (2015). The digital phenotype. Nature biotechnology, 33(5), 462–463. doi:10.1038/nbt.3223
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R.M. …
Zimmerman, M. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP):
A dimensional alternative to traditional nosologies. Journal of abnormal psychology,
(4), 454–477. doi:10.1037/abn0000258
Liu, D., & Baumeister, R. F. (2016). Social networking online and personality of self-
-worth: A meta-analysis. Journal of Research in Personality, 64, 79–89. doi:10.1016/j.
jrp.2016.06.024
McCain, J. L., Borg, Z. G., Rothenberg, A. H., Churillo, K. M., Weiler, P., & Campbell. W. K.
(2016). Personality and selfies: Narcissism and the Dark Triad. Computers in Human
Behavior, 64, 126–133. doi:10.1016/j.chb.2016.06.050
Millon, T. (2016). What is a personality disorder? Journal of personality disorders,
(3), 289–306.
Mohr, D. C., Weingardt, K. R., Reddy, M., Schueller, S. M. (2017). Three problems with
current digital mental health research … and three things we can do about them.
Psychiatric Services, 68(5), 427–429. doi:10.1176/appi.ps.201600541
Moon, J. H., Lee, E., Lee, J. A., Choi, T. R., & Sung, Y. (2016). The role of narcissism
in self-promotion on Instagram. Personality and Individual Differences, 101, 22–25.
doi:10.1016/j.paid.2016.05.042
Oldham, J. M. (2017). DSM Models of Personality Disorders. Curr Opin Psychol, 21, 86–88.
Onnela, J. P., & Rauch, S. L. (2016). Harnessing smartphone-based digital phenotyping
to enhance behavioral and mental health. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 41(7), 1691. doi:10.1038/
npp.2016.7
Paris, J. A. (2015). A concise guide to personality disorders. Washington, DC: American
Psychiatric Association.
Preotiuc-Pietro, D., Carpenter, J., Giorgi, S., & Ungar, L. (2016). Studying the dark triad
of personality through Twitter behavior. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management, 761–770.
Saeb, S., Cybulski, T. R., Kording, K. P., & Mohr, D. C. (2017). Scalable passive sleep
monitoring using mobile phones: Opportunities and obstacles. Journal of Medical
Internet Research, 19(4), e118. doi:10.2196/jmir.6821
Shariff, S. Z., Bejaimal, S. A., Sontrop, J. M., Iansavichus, A. V., Haynes, R. B., Weir,
M. A., & Garg, A. X. (2013). Retrieving clinical evidence: a comparison of PubMed and Google Scholar for quick clinical searches. J Med Internet Res, 15(8), e164. doi:10.2196/jmir.2624
Skodol, A. E. (2012). Personality Disorders in DSM-5. Annu Rev Clin Psychol, 8(1), 317–344.
Torous, J., & Nebeker, C. (2017) Navigating ethics in the digital age: Introducing Connected and Open Research Ethics (CORE), a tool for researchers and institutional review boards. Journal of Medical Internet Research, 19(2), e38. doi:10.2196/jmir.6793
Torous, J., Firth, J., Mueller, N., Onnela, J. P., & Baker, J. T. (2017). Methodology and
Reporting of Mobile Heath and Smartphone Application Studies for Schizophrenia.
Harvard Review of Psychiatry, 25(3), 146–154. doi:10.1097/HRP.0000000000000133
Torous, J., Kiang, M. V., Lorme, J., & Onnela, J.P. (2016). New tools for new research in
psychiatry: A scalable and customizable platform to empower data driven smartphone research. JMIR Mental Health, 3(2), e16. doi:10.2196/mental.5165
Torous, J., Onnela, J. P., & Keshavan, M. (2017). New dimensions and new tools to realize
the potential of RDoC: Digital phenotyping via smartphones and connected devices.
Translational Psychiatry, 7(3), e1053. doi:10.1038/tp.2017.25
Torous, J., & Roberts, L. W. (2017). Needed innovation in digital health and smartphone applications for mental health transparency and trust. JAMA Psychiatry, 74(5),
–438. doi:10.1001/jamapsychiatry.2017.0262
Venkatesh, S., & Christensen, H. (2017). Using life’s digital detritus to feed discovery. The
lancet psychiatry, 4(3), 181. doi:10.1016/S2215-0366(16)30351-0
Wiederhold, B. K. (2016). Using your digital phenotype to improve your mental
health. Cyberpsychology, Behavior, and Social Networking, 19(7), 419. doi:10.1089/
cyber.2016.29039.bkw
Winter, J. C. F., Zadpoor, A. A., & Dodou, D. (2014). The expansion of Google Scholar versus Web of Science: A longitudinal study. Scientometrics, 98(2), 1547–1565.
doi:10.1007/s11192-013-1089-2