Deficiência Visual e Plasticidade no Cérebro Humano

Conteúdo do artigo principal

Maria Luíza Rangel
Luísa Azevedo Damasceno
Carlos Alberto Ismério dos Santos Filho
Felipe Santos de Oliveira
Fernanda Jazenko
Antonio Pereira
Luiz de Gonzaga Gawryszewski

Resumo

O ser humano é capaz de analisar o mundo à sua volta através de informações provenientes das diversas modalidades sensoriais. A percepção do mundo a cada momento envolve a integração dessas informações em áreas multisensoriais existentes no cérebro humano. Desta forma, pode-se imaginar as profundas transformações que ocorrem  no cérebro após a perda de uma aferência sensorial. Estudos anatômicos, fisiológicos e comportamentais em animais têm sugerido que mudanças plásticas compensatórias devem também ocorrer nos seres humanos, alterando as conexões do cortex visual com os cortices somestésico e auditivo. Utilizando as novas idéias sobre as áreas multimodais e metamodais, pretendemos analisar como ocorre a reorganização dos sentidos remanescentes após a perda da visão.

Downloads

Não há dados estatísticos.

Detalhes do artigo

Seção
Artigos

Referências

AMEDI, A. et al. Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nature Neuroscience, v. 10, n. 6, p. 687-689, 2007.

AMEDI, A. et al. Neural and behavioral correlates of drawing in an early blind painter: a case study. Brain Research, v. 1242, p. 252-262, 2008.

BÜCHEL, C. et al. Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain, v. 121, p. 409- 419, 1998.

BURTON, H. et al. Adaptive changes in early and late blind: a fMRI study of Braille reading. The Journal of Neurophysiology, v. 87, n. 1, p. 589-607, 2002.

COLLIGNON, O. et al. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, v. 192, n. 3, p. 343-358, 2009.

COHEN L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature, v. 389, p. 180-183, 1997.

DE LEO, D., MENECHEL, G., CANTOR, H. M. Blindness, fear of sight loss, and suicide. Psychosomatics,v. 40, n. 4, p. 339-344, 1999.

DE VOLDER A. G. et al. Auditory triggered mental imagery of shape involves visual association areas in early blind humans. Neuroimage, v. 14, p. 129-139, 2001.

FELLEMAN, D. J.; ESSEN D. C. van. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex, v. 1, n. 1, p. 1-47, Jan./Feb. 1991.

GHAZANFAR A. A.; SCHROEDER C. E. Is neocortex essentially multisensory? Trends in Cognitive Sciences, v. 10, p. 278-295, 2006.

HAMILTON, R. H.; PASCUAL-LEONE, A. Cortical plasticity associated with Braille learning. Trends in Cognitive Science, v. 2, n. 5, p. 168-174, 1998.

HAMILTON, R. et al. Alexia for Braille following bilateral occipital stroke in an early blind woman. NeuroReport, v. 11, p. 237-240, 2000.

HUANG, A. L. et al. The cells and logic for mammalian sour taste detection. Nature, v. 442, n. 7105, p. 934-938, 2006.

HUBEL, D.; WIESEL, T. Receptive fields in cat striate cortex. Journal of Physiology, v. 48, p. 574-591, 1959.

IMBIRIBA, L. A. et al. Motor imagery in blind subjects: the influence of the previous visual experience. Neuroscience Letters,v. 400, p. 181-185, 2006.

IMBIRIBA, L. A. et al.Blindness and motor imagery. In: GUILLOT A.; COLLET, C. (Org.). The neurophysiological foundations of mental and motor imagery. Oxford: Oxford University Press, 2009.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Censo 2000. Disponível em: <http://www.ibge.gov.br>. Acesso em: 5 ago. 2009.

KING, A. J.; CALVERT, G. A. Multisensory integration: perceptual grouping by eye and ear. Current Biology, v. 11, n. 8, p. 322-325, 2001.

KUJALA,T. et al. Visual cortex activation in blind humans during sound discrimination. Neuroscience Letters,v.183, p. 143-146, 1995.

LAMBERT, S. et al. Blindness and brain plasticity: contribution of mental imagery? An fMRI study. Cognitive Brain Research, v. 20, p. 1-11, 2004.

LEWALD, J. Opposing effects of head position on sound localization in blind and sighted human subjects. European Journal of Neuroscience, v. 15, n. 7, p. 1219-1224, 2002.

LIU, Y. et al. Whole brain functional connectivity in the early blind. Brain, v. 130, p. 2085-2096, 2007.

LURIA, A. R. Fundamentos de neuropsicologia. São Paulo: Edusp, 1981.

MARTUZZI, R. et al. Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cerebral Cortex, v. 17, v. 1672-1679, 2007.

MERABET, L. et al. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nature Reviews Neuroscience, v. 6, n. 1, p. 71-77, 2005.

MERABET, L. B. et al. Rapid and reversible recruitment of early visual cortex for touch. Plos One, v. 3, n. 8, p. e3046, 2008.

MILNER, A. D.; GOODALE, M. A. The visual brain in action. New York: Oxford University Press, 1995.

MOUNTCASTLE, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology, v. 20, p. 408-434, 1957.

MÜLLER, J. M. Johannes Müller: As energias específicas dos nervos, 1838. In: Herrnstein R. and Boring, E. (Ed.). Textos básicos de história da Psicologia, São Paulo: Editora Herder – Universidade de São Paulo, 1971.

OGUSUKO, M. T.; LUKASOVA, K.; MACEDO, E. C. Movimentos oculares na leitura de palavras isoladas por jovens e adultos em alfabetização. Psicologia: teoria e prática, v. 10, n. 1, p. 113-124, 2008.

PASCUAL-LEONE, A.; HAMILTON, R. The metamodal organization of the brain. In: CASANOVA, C.; PTITO, M. (Ed.). Vision: from neurons to cognition, progress in brain research. Amsterdam: Elsevier, 2001. v. 134, p. 427-445.

PASCUAL-LEONE, A. et al. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia, v. 37, p. 207-217, 1999.

PASCUAL-LEONE, A. et al. The plastic human brain cortex. Annual Review Neuroscience, v. 28, p. 377-401, 2005.

PTITO, M. et al. TMS of the occipital cortex induces tactile sensations in the fingers of Braille readers. Experimental Brain Research, v. 184, p. 193-200, 2008.

PURVES, D. et al. (Ed.). Neuroscience. 3. ed. Sunderland: Sinauer Associates, 2004.

RESNIKOFF,S. et al. Global data on visual impairment in the year 2002. Bulletin of the World Health Organization, v. 82, n. 11, p. 844-851, 2004.

SADATO, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature, v. 380, p. 526-528, 1996.

SADATO, N. et al. Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage, v. 16, n. 2, p. 389-400, 2002.

SCHROEDER, C. E.; FOXE, J. J. Multisensory contributions to low-level, “unisensory” processing. Current Opinion in Neurobiology, v. 15, p. 454-458, 2005.

SHENTON, J. T.; SCHWOEBEL, J.; COSLETT, H. B. Mental motor imagery and body schema: evidence for proprioceptive dominance. Neuroscience Letters, v. 370, p. 19-24, 2004.

STEVENS, A. A. et al. Preparatory activity in occipital cortex in early blind humans predicts auditory perceptual performance. Journal of Neuroscience, v. 27, n. 40, p. 10734-10741, 2007.

TOOTELL, R. B. H. et al. New images from human visual cortex. Trends in Neurosciences,v. 19, p. 481-489, 1996.

VEER, E van der.; VALSINER, J. Vygotsky – Uma síntese. São Paulo: Unimarco, Loyola, 1996.

VIGOTSKI, L. S. Teoria e método em psicologia.São Paulo: Martins Fontes, 1996.

WALLACE, M. T. et al. Visual experience is necessary for the development of multisensory integration. Journal of Neuroscience, v. 24, n. 43, p. 9580-9584, 2004.

WANET-DEFALQUE, M. C. et al. High metabolic activity in the visual cortex of early blind human subjects. Brain Research, v. 446, p. 369-373, 1988.

WEEKS, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. Journal of Neuroscience,v. 20, p. 2664-2672, 2000.