Deficiência Visual e Plasticidade no Cérebro Humano
Conteúdo do artigo principal
Resumo
O ser humano é capaz de analisar o mundo à sua volta através de informações provenientes das diversas modalidades sensoriais. A percepção do mundo a cada momento envolve a integração dessas informações em áreas multisensoriais existentes no cérebro humano. Desta forma, pode-se imaginar as profundas transformações que ocorrem no cérebro após a perda de uma aferência sensorial. Estudos anatômicos, fisiológicos e comportamentais em animais têm sugerido que mudanças plásticas compensatórias devem também ocorrer nos seres humanos, alterando as conexões do cortex visual com os cortices somestésico e auditivo. Utilizando as novas idéias sobre as áreas multimodais e metamodais, pretendemos analisar como ocorre a reorganização dos sentidos remanescentes após a perda da visão.
Downloads
Detalhes do artigo
Os direitos autorais dos artigos publicados na Revista Psicologia: Teoria e Prática pertencem aos autores, que concedem à Universidade Presbiteriana Mackenzie os direitos não exclusivos de publicação do conteúdo.
Referências
AMEDI, A. et al. Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nature Neuroscience, v. 10, n. 6, p. 687-689, 2007.
AMEDI, A. et al. Neural and behavioral correlates of drawing in an early blind painter: a case study. Brain Research, v. 1242, p. 252-262, 2008.
BÜCHEL, C. et al. Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain, v. 121, p. 409- 419, 1998.
BURTON, H. et al. Adaptive changes in early and late blind: a fMRI study of Braille reading. The Journal of Neurophysiology, v. 87, n. 1, p. 589-607, 2002.
COLLIGNON, O. et al. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, v. 192, n. 3, p. 343-358, 2009.
COHEN L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature, v. 389, p. 180-183, 1997.
DE LEO, D., MENECHEL, G., CANTOR, H. M. Blindness, fear of sight loss, and suicide. Psychosomatics,v. 40, n. 4, p. 339-344, 1999.
DE VOLDER A. G. et al. Auditory triggered mental imagery of shape involves visual association areas in early blind humans. Neuroimage, v. 14, p. 129-139, 2001.
FELLEMAN, D. J.; ESSEN D. C. van. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex, v. 1, n. 1, p. 1-47, Jan./Feb. 1991.
GHAZANFAR A. A.; SCHROEDER C. E. Is neocortex essentially multisensory? Trends in Cognitive Sciences, v. 10, p. 278-295, 2006.
HAMILTON, R. H.; PASCUAL-LEONE, A. Cortical plasticity associated with Braille learning. Trends in Cognitive Science, v. 2, n. 5, p. 168-174, 1998.
HAMILTON, R. et al. Alexia for Braille following bilateral occipital stroke in an early blind woman. NeuroReport, v. 11, p. 237-240, 2000.
HUANG, A. L. et al. The cells and logic for mammalian sour taste detection. Nature, v. 442, n. 7105, p. 934-938, 2006.
HUBEL, D.; WIESEL, T. Receptive fields in cat striate cortex. Journal of Physiology, v. 48, p. 574-591, 1959.
IMBIRIBA, L. A. et al. Motor imagery in blind subjects: the influence of the previous visual experience. Neuroscience Letters,v. 400, p. 181-185, 2006.
IMBIRIBA, L. A. et al.Blindness and motor imagery. In: GUILLOT A.; COLLET, C. (Org.). The neurophysiological foundations of mental and motor imagery. Oxford: Oxford University Press, 2009.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Censo 2000. Disponível em: <http://www.ibge.gov.br>. Acesso em: 5 ago. 2009.
KING, A. J.; CALVERT, G. A. Multisensory integration: perceptual grouping by eye and ear. Current Biology, v. 11, n. 8, p. 322-325, 2001.
KUJALA,T. et al. Visual cortex activation in blind humans during sound discrimination. Neuroscience Letters,v.183, p. 143-146, 1995.
LAMBERT, S. et al. Blindness and brain plasticity: contribution of mental imagery? An fMRI study. Cognitive Brain Research, v. 20, p. 1-11, 2004.
LEWALD, J. Opposing effects of head position on sound localization in blind and sighted human subjects. European Journal of Neuroscience, v. 15, n. 7, p. 1219-1224, 2002.
LIU, Y. et al. Whole brain functional connectivity in the early blind. Brain, v. 130, p. 2085-2096, 2007.
LURIA, A. R. Fundamentos de neuropsicologia. São Paulo: Edusp, 1981.
MARTUZZI, R. et al. Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cerebral Cortex, v. 17, v. 1672-1679, 2007.
MERABET, L. et al. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nature Reviews Neuroscience, v. 6, n. 1, p. 71-77, 2005.
MERABET, L. B. et al. Rapid and reversible recruitment of early visual cortex for touch. Plos One, v. 3, n. 8, p. e3046, 2008.
MILNER, A. D.; GOODALE, M. A. The visual brain in action. New York: Oxford University Press, 1995.
MOUNTCASTLE, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology, v. 20, p. 408-434, 1957.
MÜLLER, J. M. Johannes Müller: As energias específicas dos nervos, 1838. In: Herrnstein R. and Boring, E. (Ed.). Textos básicos de história da Psicologia, São Paulo: Editora Herder – Universidade de São Paulo, 1971.
OGUSUKO, M. T.; LUKASOVA, K.; MACEDO, E. C. Movimentos oculares na leitura de palavras isoladas por jovens e adultos em alfabetização. Psicologia: teoria e prática, v. 10, n. 1, p. 113-124, 2008.
PASCUAL-LEONE, A.; HAMILTON, R. The metamodal organization of the brain. In: CASANOVA, C.; PTITO, M. (Ed.). Vision: from neurons to cognition, progress in brain research. Amsterdam: Elsevier, 2001. v. 134, p. 427-445.
PASCUAL-LEONE, A. et al. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia, v. 37, p. 207-217, 1999.
PASCUAL-LEONE, A. et al. The plastic human brain cortex. Annual Review Neuroscience, v. 28, p. 377-401, 2005.
PTITO, M. et al. TMS of the occipital cortex induces tactile sensations in the fingers of Braille readers. Experimental Brain Research, v. 184, p. 193-200, 2008.
PURVES, D. et al. (Ed.). Neuroscience. 3. ed. Sunderland: Sinauer Associates, 2004.
RESNIKOFF,S. et al. Global data on visual impairment in the year 2002. Bulletin of the World Health Organization, v. 82, n. 11, p. 844-851, 2004.
SADATO, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature, v. 380, p. 526-528, 1996.
SADATO, N. et al. Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage, v. 16, n. 2, p. 389-400, 2002.
SCHROEDER, C. E.; FOXE, J. J. Multisensory contributions to low-level, “unisensory” processing. Current Opinion in Neurobiology, v. 15, p. 454-458, 2005.
SHENTON, J. T.; SCHWOEBEL, J.; COSLETT, H. B. Mental motor imagery and body schema: evidence for proprioceptive dominance. Neuroscience Letters, v. 370, p. 19-24, 2004.
STEVENS, A. A. et al. Preparatory activity in occipital cortex in early blind humans predicts auditory perceptual performance. Journal of Neuroscience, v. 27, n. 40, p. 10734-10741, 2007.
TOOTELL, R. B. H. et al. New images from human visual cortex. Trends in Neurosciences,v. 19, p. 481-489, 1996.
VEER, E van der.; VALSINER, J. Vygotsky – Uma síntese. São Paulo: Unimarco, Loyola, 1996.
VIGOTSKI, L. S. Teoria e método em psicologia.São Paulo: Martins Fontes, 1996.
WALLACE, M. T. et al. Visual experience is necessary for the development of multisensory integration. Journal of Neuroscience, v. 24, n. 43, p. 9580-9584, 2004.
WANET-DEFALQUE, M. C. et al. High metabolic activity in the visual cortex of early blind human subjects. Brain Research, v. 446, p. 369-373, 1988.
WEEKS, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. Journal of Neuroscience,v. 20, p. 2664-2672, 2000.