Memoria de Trabajo, Sentido de Número y Rendimiento Aritmético

Contenido principal del artículo

Luciana Vellinho Corso

Resumen

Relaciones entre la memoria de trabajo (MT) y el desempeño matemático son discutidas en la literatura, todavía son controvertidos los resultados sobre cuales componentes de la MT desempeñan papel destacado en competencia numérica. Relaciones entre sentido numérico (SN) y MT son más recientes. Este estudio objetivó correlacionar la MT (ejecutivo central – información numérica y no numérica; y fonológico – repetición de dígitos, frases, relatos) con el desempeño aritmético (prueba aritmética TDE) y el desempeño en SN (Prueba de Conocimiento Numérico). Participaron 79 alumnos, del 4º al 7º año de la enseñanza fundamental, con desempeño bajo y mediano en aritmética. Un mejor desempeño en el ejecutivo central se correlacionó con mejor desempeño en SN y en aritmética. El mismo no fue evidenciado para el componente fonológico. Implicaciones educativas derivan de la ampliación de conocimientos en esta área. Se resalta la importancia de uniformidad de los instrumentos que evalúan estos ámbitos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Desarrollo Humano

Citas

Andersson, U. (2008).Working memory as a predictor of written arithmetic skills in children: The importance of executive functions. British Journal of Educational Psychology, 78, 181–203.

Andersson, U., & Lyxell, B. (2007).Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96(3), 197–228.

Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in cognitive science, 4, 417–423.

Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation. (pp. 47–91). London: Academic Press.

Corso, L., & Dorneles, B. (2010). Senso numérico e dificuldades de aprendizagem na matemática. Revista Psicopedagogia, 27(83), 298–309.

Dehaene, S. (2001). Précis of the number sense. Mind & Language, 16, 16–36.

Friso-van den Bos, I., Van Der Ven, S., Kroesbergen, E., & Van Luit, J. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44.

Golbert, C. S. (1988). A Evolução Psicolingüística e suas implicações na alfabetização: teoria, avaliação, reflexões. Porto Alegre: Artmed.

Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal of Research in Mathematics Education, 23(3), 170–218.

Hecht, S., Torgesen, J., Wagner, R., et al. (2001). The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: a longitudinal study from second to fifth grades. Journal of Experimental Child Psychology, 79, 192–227.

Jordan, N. C., Glutting, J., Ramineni, C., & Watkins, M. W. (2010). Validating a number sense screening tool for use in kindergarten and first grade: Prediction of mathematics proficiency in third grade. School Psychology Review, 39, 181–185.

Kroesbergen, E., Van Luit, J., Van Lieshout, E., Van Loosbroek, E., & Van De Rijt, B. (2009). Individual differences in early numeracy: The role of executive functions and subitizing. Journal of Psychoeducational Assessment, 27, 226–236.

Kuhn, J., & Holling, H. (2014). Number sense or working memory? The effect of two computer-based trainings on mathematical skills in elementary school. Advances in Cognitive Psychology, 10(2), 59–67.

Lee, K., Ng, S., Pe, M., Ang, S., Hasshim, M., & Bull, R. (2012). The cognitive underpinnings of emerging mathematical skills: Executive functioning, patterns, numeracy, and arithmetic. British Journal of Educational Psychology, 82, 82–99.

Mclean, J., & Hitch, G. (1999).Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74, 240–260.

Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291.

Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20, 101–109.

Okamoto, Y., & Case, R. (1996). Exploring the microstructure of children’s central conceptual structures in the domain of number. Monographs of the Society for Research in Child Development, 61, 27–59.

Passolunghi, M., Mammarella, I., & Altoè, G. (2008).Cognitive abilities as precursors of the early acquisition of mathematical skills during first through second grades. Developmental Neuropsychology, 33, 229–250.

Passolunghi, M., & Lanfranchi, S. (2012). Domain specific and domain general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82, 42–63.

Sowder, J., & Shapelle, B. P. (1989). Establishing foundations for research on number sense and related topics: Report of a conference. San Diego: Diego State University Center for Research in Mathematics and Science Education.

Spinillo, A. G. (2014). Usos e funções do número em situações do cotidiano. In Brasil, Pacto Nacional pela alfabetização na idade certa: quantificações, registros e agrupamentos (pp. 20–29). Brasília: MEC, SEB.

Stein, L. (1994). TDE – Teste de Desempenho Escolar: manual para a aplicação e interpretação. São Paulo: Casa do Psicólogo.

Wechsler, D. (2013). WISC-IV: Escala de Inteligência Wechsler para crianças: manual (4 ed.). São Paulo: Casa do Psicólogo.

Yuill, N., Oakhill, J., & Parkin, A. (1989).Working memory, comprehension ability and the resolution of text anomaly. British Journal of Psychology, 80, 351–361.