Invited Commentary Exploratory Graph Analysis in Context
Contenido principal del artículo
Resumen
Este artículo presenta el marco psicométrico de redes para el análisis de dimensionalidad y de ítems denominado análisis gráfico exploratorio (EGA). Comienza contextualizando brevemente el campo de la psicometría de redes y los primeros trabajos de los años 50 y 60. A continuación, se ofrece una breve visión general del análisis gráfico exploratorio y otros desarrollos recientes, como las cargas de red (una métrica similar a las cargas factoriales), el índice de ajuste de entropía total (verificación del ajuste de la dimensionalidad), el EGA dinámico, el EGA bootstrap para la dimensionalidad y la estabilidad de los ítems, el EGA de interceptos aleatorios (manejo de los sesgos de respuesta) y el EGA jerárquico para estimar estructuras de orden superior (por ejemplo, modelos bifactoriales generalizados). El objetivo del artículo es presentar al lector una lista de referencias contextualizadas.
Descargas
Detalles del artículo
Los derechos de autor de los artículos publicados en Psicología: Teoría y Practica pertenecen a los autores, quienes otorgan a la Universidad Presbiteriana Mackenzie los derechos no exclusivos para publicar el contenido.
Citas
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
Boker, S. M. (2018). Longitudinal multivariate psychology (E. Ferrer, S. M. Boker, & K. J. Grimm, Eds.). Routledge.
Boker, S. M., Deboek, P. R., Edler, C., & Keel, P. (2010). Generalized local linear approximation of derivatives from time series. In S. M. Chow, E. Ferrer, & F. Hsieh (Eds.), The notre dame series on quantitative methodology. Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 161–178). Routledge/Taylor & Francis Group.
Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089–1108.
Borsboom, D., Cramer, A. O., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PloS One, 6(11), e27407.
Bringmann, L. F., & Eronen, M. I. (2018). Don’t blame the model: Reconsidering the network approach to psychopathology. Psychological Review, 125(4), 606–615. https://doi.org/10.1037/rev0000108
Cattell, R. B. (1965). Studies in psychology (C. Banks & P. L. Broadhurst, Eds.). University of London Press London.
Chen, J., & Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771. Retrieved from https://www.jstor.org/stable/20441500
Christensen, A. P., Cotter, K. N., & Silvia, P. J. (2019). Reopening openness to experience: A network analysis of four openness to experience inventories. Journal of Personality Assessment, 101(6), 574–588. https://doi.org/10.1080/00223891.2018.1467428
Christensen, A. P., Garrido, L. E., & Golino, H. (2020a). Comparing community detection algorithms in psychological data: A monte carlo simulation. PsyArXiv. https://doi.org/10.31234/osf.io/hz89e
Christensen, A. P., Garrido, L. E., & Golino, H. (2020b). Unique variable analysis: A novel approach for detecting redundant variables in multivariate data. PsyArXiv. https://doi.org/10.31234/osf.io/4kra2
Christensen, A. P., & Golino, H. (2021a). Estimating the stability of psychological dimensions via bootstrap exploratory graph analysis: A monte carlo simulation and tutorial. Psych, 3(3), 479–500.
Christensen, A. P., & Golino, H. (2021b). Factor or network model? Predictions from neural networks. Journal of Behavioral Data Science, 1(1), 85–126. https://doi.org/10.35566/jbds/v1n1/p5
Christensen, A. P., & Golino, H. (2021c). On the equivalency of factor and network loadings. Behavior Research Methods, 1–18. https://doi.org/10.3758/s13428-020-01500-6
Christensen, A. P., Golino, H., & Silvia, P. J. (2020). A psychometric network perspective on the validity and validation of personality trait questionnaires. European Journal of Personality, 34(6), 1095–1108. https://doi.org/10.1002/per.2265
Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network structure of the wisconsin schizotypy scales–short forms: Examining psychometric network filtering approaches. Behavior Research Methods, 50(6), 2531–2550. https://doi.org/doi: 10.3758/s13428-018-1032-9
Cramer, A. O. (2012). Why the item “23+ 1” is not in a depression questionnaire: Validity from a network perspective. Measurement: Interdisciplinary Research & Perspective, 10(1-2), 50–54. https://doi.org/10.1080/15366367.2012.681973
Cramer, A., Waldorp, L. J., Van Der Maas, H. L., & Borsboom, D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33(2-3), 137–150. https://doi.org/10.1017/S0140525X09991567
Epskamp, M., S. (2018). Network psychometrics. In B. Irwing Paul (Ed.), The wiley handbook of psychometric testing: A multidisciplinary reference on survey, scale and test development (pp. 953–986). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118489772.ch30
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18. https://doi.org/10.18637/jss.v048.i04
Epskamp, S., & Fried, E. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617–634. https://doi.org/10.1037/met0000167
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network pschometrics: Combining network and latent variable models. Psychometrika, 82(4), 904–927. https://doi.org/10.1007/s11336-017-9557-x
Garcia-Pardina, A., Abad, F. J., Christensen, A. P., Golino, H., & Garrido, L. E. (2022). Dimensionality assessment in the presence of wording effects: A network psychometric and factorial approach. PsyArXiv. https://doi.org/10.31234/osf.io/7yqau
Golino, H. F., & Demetriou, A. (2017). Estimating the dimensionality of intelligence like data using exploratory graph analysis. Intelligence, 62, 54–70. https://doi.org/10.1016/j.intell.2017.02.007
Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PloS One, 12(6), e0174035. https://doi.org/10.1371/journal.pone.0174035
Golino, H., & Christensen, A. P. (2019). EGAnet: Exploratory graph analysis: A framework for estimating the number of dimensions in multivariate data using network psychometrics. Retrieved from https://CRAN.R-project.org/package=EGAnet
Golino, H., Christensen, A. P., Moulder Jr, R. G., Kim, S., & Boker, S. M. (2020). Modeling latent topics in social media using dynamic exploratory graph analysis: The case of the right-wing and left-wing trolls in the 2016 US elections.
Golino, H., Lillard, A. S., Becker, I., & Christensen, A. P. (2021). Investigating the structure of the children’s concentration and empathy scale using exploratory graph analysis. Psychological Test Adaptation and Development, 1(1), 1–15. https://doi.org/10.1027/2698-1866/a000008
Golino, H., Moulder, R., Shi, D., Christensen, A., Garrido, L., Neto, M., ... Boker, S. (2020). Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2020.1779642
Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., ... Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. Psychological Methods, 25(3), 292–230. https://doi.org/10.1037/met0000255
Guttman, L. (1953). Image theory for the structure of quantitative variates. Psychometrika, 18(4), 277–296.
Guyon, H., Falissard, B., & Kop, J.-L. (2017). Modeling psychological attributes in psychology–an epistemological discussion: Network analysis vs. Latent variables. Frontiers in Psychology, 8, 798. https://doi.org/10.3389/fpsyg.2017.00798
Haslbeck, J. M. B., & Waldorp, L. J. (2020). Mgm: Estimating time-varying mixed graphical models in high-dimensional data. Journal of Statistical Software, 93(8), 1–46. https://doi.org/10.18637/jss.v093.i08
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
Humphreys, L. G., & Ilgen, D. R. (1969). Note on a criterion for the number of common factors. Educational and Psychological Measurement, 29(3), 571–578.
Jamison, L., Golino, H., & Christensen, A. P. (2022). Metric invariance in exploratory graph analysis via permutation testing. PsycArxiv. https://doi.org/10.31234/osf.io/j4rx9
Jimenez, M., Abad, F. J., Garcia-Garzon, E., Golino, H., Christensen, A. P., & Garrido, L. E. (2022). Dimensionality assessment in generalized bi-factor structures: A network psychometrics approach. PsyArXiv. https://doi.org/10.31234/osf.io/2ujdk
Kan, K.-J., Jonge, H. de, Maas, H. L. van der, Levine, S. Z., & Epskamp, S. (2020). How to compare psychometric factor and network models. Journal of Intelligence, 8(4), 35. https://doi.org/10.3390/jintelligence8040035
Lauritzen, S. L. (1996). Graphical models (Vol. 17). Oxford: Clarendon Press. Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., Bork, R. van, Waldorp, L., ... Maris, G. (2018). An introduction to network psychometrics: Relating ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15–35.
Massara, G. P., Di Matteo, T., & Aste, T. (2016). Network filtering for big data: Triangulated maximally filtered graph. Journal of Complex Networks, 5(2), 161–178. https://doi.org/10.1093/comnet/cnw015
McArdle, J. (1979). The development of general multivariate software. Proceedings of the Association for the Development of Computer-Based Instructional Systems. Akron, Ohio: University of Akron Press.
McArdle, J. J. (1980). Causal modeling applied to psychonomic systems simulation. Behavior Research Methods & Instrumentation, 12(2), 193–209.
Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. In Pi. Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and information sciences - ISCIS 2005 (pp. 284–293). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11569596_31
Preskill, J. (2018). Quantum shannon entropy. In J. Preskill (Ed.), Quantum information (p. 94). Cambridge University Press. Retrieved from https://arxiv.org/pdf/1604.07450.pdf
Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45(1), 73–103.
Van Der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842–861.
Von Neumann, J. (1927). Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik. Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Mathematisch-Physikalische Klasse, 1927, 245–272.
Williams, D. R., & Rast, P. (2020). Back to the basics: Rethinking partial correlation network methodology. British Journal of Mathematical and Statistical Psychology, 73(2), 187–212. https://doi.org/10.1111/bmsp.12173
Williams, D. R., Rhemtulla, M., Wysocki, A. C., & Rast, P. (2019). On nonregularized estimation of psychological networks. Multivariate Behavioral Research, 54(5), 719–750. https://doi.org/10.1080/00273171.2019.1575716