Revisão Teórico-Integrativa na Atualização sobre Vocalização Ultrassônica em Animais: Correlação com o Modelo de Transtorno do Espectro Autista?
Conteúdo do artigo principal
Resumo
A capacidade de compreender e comunicar com os outros é fundamental para o desenvolvimento das crianças durante o desenvolvimento típico, uma série de atos comunicativos emerge e continua a se desenvolver à medida que a linguagem estrutural se desenvolve. Entre os desarranjos que podem acometer a comunicação, o transtorno do espectro do autismo é uma desordem de neurodesenvolvimento caracterizada por deficiências de expressão e interações sociais, ocorrendo comportamentos repetitivos, estereotipados e com caracterização de interesses restritos. No contraponto da pesquisa clínica estão os modelos de experimentação animal. Embora não caracterizem um estado total exclusivo de ordem humana, a pesquisa com modelo animal é primordial para os avanços e melhor compreensão dos pacientes a partir de situações mais tratáveis e exploradas mecanisticamente com esse tipo de desordem. Sabendo da importância da comunicação dentro do TEA, organizamos e ressaltamos os principais estudos conduzidos em pesquisa básica que utilizam modelos animais com enfoque na vocalização ultrassônica. Especificamente, objetivamos avaliar a importância dos principais estudos e perceptivas futuras para a esfera neurocomportamental. A pesquisa bibliográfica foi realizada em abril de 2018, na base de dados PubMed, utilizando os descritores "Autism ultrassonic vocalization” sendo selecionados 18 trabalhos. Fica evidente através dos achados o papel crucial de determinados genes modulando os aspectos de comunicação, grande maioria podendo ser marcadores de déficits de comunicação. Uma possível técnica na esfera da biologia molecular que possa vir a contribuir para a modificação desse quadro são as chamadas terapias gênicas.
Downloads
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados na Revista Psicologia: Teoria e Prática pertencem aos autores, que concedem à Universidade Presbiteriana Mackenzie os direitos não exclusivos de publicação do conteúdo.
Referências
Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: are ultrasounds learned or innate? Brain Lang, 124(1), 96–116. doi:10.1016/j.bandl.2012.10.002
Ashbrook, D. G., Roy, S., Clifford, B. G., Riede, T., Scattoni, M. L., Heck, D. H., & Williams, R. W. (2018). Born to cry: A genetic dissection of infant vocalization. Frontiers in Behavioral Neuroscience, 12, 250. doi:10.3389/fnbeh.2018.00250
Berg, E. L., Copping, N. A., Rivera, J. K., Pride, M. C., Careaga, M., Bauman, M. D., & Silverman, J. L. (2018). Developmental social communication deficits in the Shank3 rat model of phelan-mcdermid syndrome and autism spectrum disorder. Autism Research, 11(4), 587–601. doi:10.1002/aur.1925
Binder, M. S., Hernandez-Zegada, C. J., Potter, C. T., Nolan, S. O., & Lugo, J. N. (2018). A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research. Journal of Neuroscience Methods, 309, 6–12. doi:10.1016/j.jneumeth.2018.08.015
Binder, M. S., & Lugo, J. N. (2017). NS-Pten knockout mice show sex- and age-specific differences in ultrasonic vocalizations. Brain and Behavior, 7(11), e00857. doi:10.1002/ brb3.857
Bishop, S. L., & Lahvis, G. P. (2011). The autism diagnosis in translation: shared affect in children and mouse models of ASD. Autism Research, 4(5), 317-335. doi:10.1002/ aur.216
Brignell, A., Chenausky, K. V., Song, H., Zhu, J., Suo, C., & Morgan, A. T. (2018). Communication interventions for autism spectrum disorder in minimally verbal children. Cochrane Database of Systematic Reviews, 11, Cd012324. doi:10.1002/14651858.CD012324.pub2
Bronzuoli, M. R., Facchinetti, R., Ingrassia, D., Sarvadio, M., Schiavi, S., Steardo, L., & Scuderi, C. (2018). Neuroglia in the autistic brain: evidence from a preclinical model. Molecular Autism, 9, 66. doi:10.1186/s13229-018-0254-0
Cezar, L. C., Kirsten, T. B., da Fonseca, C. C. N., de Lima, A. P. N., Bernardi, M. M., & Felicio, L. F. (2018). Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 84(Pt A), 173–180. doi:10.1016/j.pnpbp.2018.02.008
Deliu, E., Arecco, N., Morandell, J., Dotter, C. P., Contreras, X., Girardot, C., & Novarino, G. (2018). Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition. Nature Neuroscience, 21(12), 1717– 1727. doi:10.1038/s41593-018-0266-2
Ey, E., Torquet, N., de Chaumont, F., Levi-Strauss, J., Ferhat, A. T., Le Sourd, A. M., & Bourgeron, T. (2018). Shank2 Mutant Mice Display Hyperactivity Insensitive to Methylphenidate and Reduced Flexibility in Social Motivation, but Normal Social Recognition. Frontiers in Molecular Neuroscience, 11, 365. doi:10.3389/fnmol.2018. 00365
Gao, S. C., Wei, Y. C., Wang, S. R., & Xu, X. H. (2019). Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice. Neuroscience Bulletin, 35(4), 697–708. doi:10.1007/s12264-019-00365-w
Hanson, J. L., & Hurley, L. M. (2012). Female presence and estrous state influence mouse ultrasonic courtship vocalizations. PLoS One, 7(7), e40782. doi:10.1371/journal.pone.0040782
Horie, K., Inoue, K., Suzuki, S., Adachi, S., Yada, S., Hirayama, T., & Nishimori, K. (2019). Oxytocin receptor knockout prairie voles generated by CRISPR/Cas9 editing show reduced preference for social novelty and exaggerated repetitive behaviors. Hormones and Behavior, 111, 60–69. doi:10.1016/j.yhbeh.2018.10.011
Hyter, Y., Vogindroukas, I., Chelas, E. N., Paparizos, K., Kivrakidou, E., & Kaloudi, V. (2017). Differentiating autism from typical development: Preliminary findings of greek versions of a pragmatic language and social communication questionnaire. Folia Phoniatrica et Logopaedica, 69(1–2), 20–26. doi:10.1159/000479277
Jouda, J., Wohr, M., & Del Rey, A. (2019). Immunity and ultrasonic vocalization in rodents. Annals of the New York Academy of Sciences, 1437(1), 68–82. doi:10.1111/nyas.13931
Jung, H., Park, H., Choi, Y., Kang, H., Lee, E., Kweon, H., & Kim, E. (2018). Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nature Neuroscience, 21(9), 1218–1228. doi:10.1038/s41593-018-0208-z
Kimura, E., & Tohyama, C. (2018). Vocalization as a novel endpoint of atypical attachment behavior in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed infant mice. Archives of Toxicology, 92(5), 1741–1749. doi:10.1007/s00204-018-2176-1
Kirsten, T. B., Casarin, R. C., Bernardi, M. M., & Felicio, L. F. (2018). Pioglitazone abolishes autistic-like behaviors via the IL-6 pathway. PLoS One, 13(5), e0197060. doi:10.1371/journal.pone.0197060
Lazaro, M. T., & Golshani, P. (2015). The utility of rodent models of autism spectrum disorders. Current Opinion in Neurology, 28(2), 103–109. doi:10.1097/wco.0000000000000183
Liu, X. L., Zahrt, D. M., & Simms, M. D. (2018). An Interprofessional Team Approach to the Differential Diagnosis of Children with Language Disorders. Pediatric Clinics of North America, 65(1), 73-90. doi:10.1016/j.pcl.2017.08.022
Maloney, S. E., Chandler, K. C., Anastasaki, C., Rieger, M. A., Gutmann, D. H., & Dougherty, J. D. (2018). Characterization of early communicative behavior in mouse models of neurofibromatosis type 1. Autism Research, 11(1), 44-58. doi:10.1002/aur.1853
McDaniel, J., D’Ambrose Slaboch, K., & Yoder, P. (2018). A meta-analysis of the association between vocalizations and expressive language in children with autism spectrum disorder. Research in Developmental Disabilities, 72, 202-213. doi:10.1016/j.ridd.2017.11.010
Missig, G., Robbins, J. O., Mokler, E. L., McCullough, K. M., Bilbo, S. D., McDougle, C. J., & Carlezon, W. A., Jr. (2019). Sex-dependent neurobiological features of prenatal immune activation via TLR7. Molecular Psychiatry. doi:10.1038/s41380-018-0346-4
Mony, T. J., Hong, M., & Lee, H. J. (2018). Empathy study in rodent model of Autism Spectrum Disorders. Psychiatry Investigation, 15(2), 104–110. doi:10.30773/pi.2017.06.20
Nolan, S. O., Hodges, S. L., Condon, S. M., Muhammed, I. D. A., Tomac, L. A., Binder, M. S., Lugo, J. N. (2019). High seizure load during sensitive periods of development leads to broad shifts in ultrasonic vocalization behavior in neonatal male and female C57BL/6J mice. Epilepsy Behavior, 95, 26–33. doi:10.1016/j.yebeh.2019.03.037
Broin, P. Ó., Beckert, M. V., Takahashi, T., Izumi, T., Ye, K., Kang, G., … Hiroi, N. (2018). Computational analysis of neonatal mouse ultrasonic vocalization. Current Protocols in Mouse Biology, 8(2), e46. doi:10.1002/cpmo.46
Parsons, L., Cordier, R., Munro, N., Joosten, A., & Speyer, R. (2017). A systematic review of pragmatic language interventions for children with autism spectrum disorder. PLoS One, 12(4), e0172242. doi:10.1371/journal.pone.0172242
Riede, T., Borgard, H. L., & Pasch, B. (2017). Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism. Royal Society Open Science, 4(11), 170976. doi:10.1098/rsos.170976
Scattoni, M. L., Crawley, J., & Ricceri, L. (2009). Ultrasonic vocalizations: A tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neuroscience & Biobehavioral Reviews, 33(4), 508–515. doi:10.1016/j.neubiorev.2008.08.003
Schuetze, M., Rohr, C. S., Dewey, D., McCrimmon, A., & Bray, S. (2017). Reinforcement Learning in Autism Spectrum Disorder. Frontiers in Psychology, 8, 2035. doi:10.3389/fpsyg.2017.02035
Screven, L. A., & Dent, M. L. (2019). Social isolation produces no effect on ultrasonic vocalization production in adult female CBA/CaJ mice. PLoS One, 14(3), e0213068. doi:10.1371/journal.pone.0213068
St Clair, D., & Johnstone, M. (2018). Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philosophical Transactions of the Royal Society B Biological Science, 373(1742). doi:10.1098/rstb.2017.0037
Sungur, A. O., Jochner, M. C. E., Harb, H., Kilic, A., Garn, H., Schwarting, R. K. W., & Wohr, M. (2017). Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder. Hippocampus, 27(8), 906–919. doi:10.1002/hipo.22741
Takumi, T., Tamada, K., Hatanaka, F., Nakai, N., & Bolton, P. F. (2019). Behavioral neuroscience of autism. Neuroscience & Biobehavioral Reviews. doi:10.1016/j.neubiorev.2019.04.012
Tatsukawa, T., Raveau, M., Ogiwara, I., Hattori, S., Miyamoto, H., Mazaki, E., … Yamakawa, K. (2019). Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Molecular Autism, 10, 15. doi:10.1186/s13229-019-0265-5
Tesdahl, N. S., King, D. K., McDaniel, L. N., & Pieper, A. A. (2017). Altered ultrasonic vocalization in neonatal SAPAP3-deficient mice. NeuroReport, 28(17), 1115–1118. doi:10.1097/wnr.0000000000000863
Toledo, M. A., Wen, T. H., Binder, D. K., Ethell, I. M., & Razak, K. A. (2019). Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9. Behavioural Brain Research, 372, 112068. doi:10.1016/j.bbr.2019.112068
Usui, N., Araujo, D. J., Kulkarni, A., Co, M., Ellegood, J., Harper, M., … Konopka, G. (2017). Foxp1 regulation of neonatal vocalizations via cortical development. Genes & Development, 31(20), 2039–2055. doi:10.1101/gad.305037.117
Vojtechova, I., Petrasek, T., Maleninska, K., Brozka, H., Tejkalova, H., Horacek, J., … Vales, K. (2018). Neonatal immune activation by lipopolysaccharide causes inadequate emotional responses to novel situations but no changes in anxiety or cognitive behavior in Wistar rats. Behavioural Brain Research, 349, 42–53. doi:10.1016/j.bbr.2018.05.001
Wadge, H., Brewer, R., Bird, G., Toni, I., & Stolk, A. (2019). Communicative misalignment in Autism Spectrum Disorder. Cortex, 115, 15–26. doi:10.1016/j.cortex.2019.01.003
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: new directions. Annual Review of Psychology, 66, 173–196. doi:10.1146/annurev-psych010814-015104
Winkler, D., Daher, F., Wustefeld, L., Hammerschmidt, K., Poggi, G., Seelbach, A., … Dere, E. (2018). Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behavioural Brain Research, 352, 35–45. doi:10.1016/j.bbr.2017.02.011
Zala, S. M., Reitschmidt, D., Noll, A., Balazs, P., & Penn, D. J. (2017). Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus). PLoS One, 12(12), e0188647. doi:10.1371/journal.pone.0188647
Zieminska, E., Toczylowska, B., Diamandakis, D., Hilgier, W., Filipkowski, R. K., Polowy, R., … Lazarewicz, J. W. (2018). Glutamate, Glutamine and GABA Levels in Rat Brain Measured Using MRS, HPLC and NMR Methods in Study of Two Models of Autism. Frontiers in Molecular Neuroscience, 11, 418. doi:10.3389/fnmol.2018.00418