Neuroinflammatory Process in Animals Infected by Toxoplasma gondii: An Integrative Review

Authors

  • Fernanda Veras de Souza Universidade Cidade de São Paulo
  • William Matiazzi Universidade de São Paulo
  • Elizama Carneiro Machado Bezerra Universidade de São Paulo

Keywords:

Toxoplasma gondii, Neuroimmunology, Neurotransmitters, Animal model, Psychobiology

Abstract

Toxoplasma gondii (T. gondii) is a eurixene parasite, of which felines are the definitive hosts and other warm-blooded animals, the intermediate hosts, having clinical importance mainly in immunocompromised individuals, which can cause behavioral changes in rodents. Among the neurophysiological mechanisms used to explain this phenomenon, there is the influence of the immune response on the central nervous system (CNS). Since neuroimmunology has been gaining ground in science in the recent years, the aim of this article was to assess the approaches in the current literature on the neuroinflammatory process in an animal model infected with T. gondii, making use of an integrative literature review. Articles indexed in the PubMed and Scopus databases that met the inclusion criteria and that carried out experimental research with rodents from January 2012 to February 2022 were considered. Forty-two articles were found, of which 18 were selected for full reading and 24 were excluded. The approaches evaluated were: a) correlation between physical state or animal behavior and neuroinflammation; b) influence of astrocytes, microglia, and neurons in the neuroinflammatory process; c) influence of the immune response to changes in neurotransmitters; and d) other immunological factors and their influence on the CNS. The integrative review allowed the discussion of the main approaches in the literature on the subject, giving an overview, in which some considerations were made that may contribute to the development of new experimental research, in order to assess the influence of the immune response on the CNS of parasitized animals.

Downloads

Download data is not yet available.

References

ATMACA, H. T. et al. Astrocytes, microglia/macrophages, and neurons expressing toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection. Neuroscience, v. 269, p. 184-191, jun. 2014. Disponível em: https://doi.org/10.1016/j.neuroscience.2014.03.049. Acesso em: 19 set. 2022.

BATISTA, J. S. et al. Gasdermin-D-dependent IL-1α release from microglia promotes protective immunity during chronic Toxoplasma gondii infection. Nature Communications, v. 11, n. 3687, p. 1-13, jul. 2020. Disponível em: https://doi.org/10.1038/s41467-020-17491-z. Acesso em: 19 set. 2022.

BERENREITEROVÁ, M. et al. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PloS one, v .6, n. 12, e28925, dez. 2011. Disponível em: https://doi.org/10.1371/journal.pone.0028925. Acesso em: 19 set. 2022.

BEZERRA, E. C. M. et al. Behavioral evaluation of BALB/c (Mus musculus) mice infected with genetically distinct strains of Toxoplasma gondii. Microb Pathog, v. 126, p. 279-286, jan. 2019. Disponível em: https://doi.org/10.1016/j.micpath.2018.11.021. Acesso em: 19 set. 2022.

BISWAS, A. et al. Behavior of neutrophil granulocytes during Toxoplasma gondii infection in the central nervous system. Frontiers in Cellular and Infection Microbiology, v. 7, n. 259, jun. 2017. Disponível em: https://doi.org/10.3389/fcimb.2017.00259. Acesso em: 19 set. 2022.

BOILLAT, M. et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by toxoplasma gondii. Cell Reports, v. 30, n. 2, p. 320-334.e6, jan. 2020. Disponível em: https://doi.org/10.1016/j.celrep.2019.12.019. Acesso em: 19 set. 2022.

CASTAÑO-BARRIOS, C. L. et al. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. Plos One, v. 16, n. 10, p. 1-30, e. 0258199, out. 2021. Disponível em: https://doi.org/10.1371/journal.pone.0258199. Acesso em: 19 set. 2022.

CEKANAVICIUTE, E. et al. Astrocytic TGF-β signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. The Journal of Immunology, v. 193, n. 1, p. 139-49, jul. 2014. Disponível em: https://doi.org/10.1371/journal.pone.0258199. Acesso em: 19 set. 2022.

COUTERMARSH-OTT, S. L. et al. Caspase-11 modulates inflammation and attenuatesToxoplasma gondii pathogenesis. Mediators of Inflammation, v. 2016, p. 1-14, jun. 2016. DOI 10.1155/2016/9848263

DARDÉ, M.-L.; AJZENBERG, D.; SU, C. Molecular epidemiology and population structure of Toxoplasma gondii. Academic Press, Amsterdam, v. 2014, p. 61-67, 2014. Disponível em: https://doi.org/10.1016/B978-0-12-396481-6.00003-9. Acesso em: 19 set. 2022.

DINCEL, G. C.; ATMACA, H. T. Nitric oxide production increases during Toxoplasma gondii encephalitis in mice. Experimental Parasitology, v. 156, p. 104-112, set. 2015. Disponível em: https://doi.org/10.1016/j.exppara.2015.06.009. Acesso em: 19 set. 2022.

DUBEY, J. P.; LINDSAY, D. S.; SPEER, C. A. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Reviews, v. 11, n. 2, p. 267-299, abr. 1998. DOI 10.1128/CMR.11.2.267

DUBEY, J. P. Toxoplasmosis of animals and humans. 2. ed. Boca Raton: CRC Press, 2010. 313p. Disponível em: https://https://doi.org/10.1186/1756-3305-3-112. Acesso em: 19 set. 2022.

DÜSEDAU, P. H. et al. p75NTR regulates brain mononuclear cell function and neuronal structure in toxoplasma infection-induced neuroinflammation. Wiley Online Library, v. 67, n. 1, p. 193-211, dez. 2019. Disponível em: https://doi.org/10.1002/glia.23553. Acesso em: 19 set. 2022.

ERCOLE, F. F.; MELO, L. S.; ALCOFORADO, C. L. G. C. Revisão integrativa versus revisão sistemática. Revista Mineira de Enfermagem, Belo Horizonte, v. 18, n. 1, 2014. Disponível em: http://www.dx.doi.org/10.5935/1415-2762.20140001. Acesso em: 19 set. 2022.

ESTATO, V. et al. The neurotropic parasite Toxoplasma gondii induces sustained neuroinflammation with microvascular dysfunction in infected mice. The American Journal of Pathology, v. 188, n. 11, p. 2674-2687, nov. 2018. Disponível em: https://doi.org/10.1016/j.ajpath.2018.07.007. Acesso em: 19 set. 2022.

FRENCH, T. et al. The immunoproteasome subunits LMP2, LMP7 and MECL-1 are crucial along the induction of cerebral toxoplasmosis. Frontiers in Immunology, v. 12, p. 1-126, abr. 2021. Disponível em: https://doi.org/10.3389/fimmu.2021.619465. Acesso em: 19 set. 2022.

GROER, M. W. et al. Prenatal depression and anxiety in Toxoplasma gondii-positive women. American Journal of Obstetrics and Gynecology, v. 204, n. 5, p. 433.e1-433. e7, maio 2011. DOI 10.1016/j.ajog.2011.01.004

HÄNDEL BRUNN, A. et al. Neuronal gp130 expression is crucial to prevent neuronal loss, hyperinflammation, and lethal course of murine Toxoplasma encephalitis. American Journal of Pathology, v. 181, n. 1, p. 163-173, jul. 2012. Disponível em: https://doi.org/10.1016/j.ajpath.2012.03.029. Acesso em: 28 set. 2022. DOI: 10.1016/j.

ajpath.2012.03.029

HIDANO, S. et al. STAT1 signaling in astrocytes is essential for control of infection in the central nervous system. MBio, v. 7, n. 6, e01881-16, nov. /dez. 2016. DOI 10.1128/mBio.01881-16

HOUSE, P. K.; VYAS, A.; SAPOLSKY, R. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats. PloS One, v. 6, n. 12, e23277, ago. 2011. Disponível em: https://doi.org/10.1371/journal.pone.0023277. Acesso em: 21 set. 2022.

INGRAM, W. M. et al. Mice infected with low-virulence strains of toxoplasma gondiigondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One, v. 8, n. 9, e75246, set. 2013. Disponível em: https://doi.org/10.1371/journal.pone.0075246. Acesso em: 21 set. 2022. DOI 10.1371/journal.pone.0075246

KANNAN, G. et al. Toxoplasma gondii strain-dependent effects on mouse behavior. Folia Parasitol (Praha), v. 57, n. 2, p. 151-155, jun. 2010. Disponível em: https://doi.org/10.14411/fp.2010.019. Acesso em: 21 set. 2022.

KOSHY, A. A. et al. Toxoplasma co-opts host cells it does not invade. PLoS Pathog, v. 8, n. 7, p. e1002825, jul. 2012. Disponível em: https://doi.org/10.1371/journal.ppat.1002825. Acesso em: 21 set. 2022.

LANG, D. et al. Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. Journal of Neuroinflammation, v. 15, n.1, p. 1-19. 2018. Disponível em: https://doi.org/10.1186/s12974-018-1242-1. Acesso em: 28 set. 2022.

LI, Y. et al. Persistent toxoplasma infection of the brain induced neurodegeneration associated with activation of complement and microglia. ASM Journals, v. 87, n. 8, p. 1-12, 2019. Disponível em: https://journals.asm.org/doi/10.1128/IAI.00139-19. Acesso em: 21 set. 2022.

LIU, J.; HUANG, S.; LU, F. Galectin-3 and Galectin-9 may differently regulate the expressions of Microglial M1/M2 markers and T Helper 1/Th2 cytokines in the brains of genetically susceptible C57BL/6 and resistant BALB/c mice following peroral infection with toxoplasma gondii. Frontiers in Immunology, v. 9, n. 1648, p. 1-12, 2018. Disponível em: https://doi.org/10.3389/fimmu.2018.01648. Acesso em: 28 set. 2022.

MCFARLAND, R. et al. AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Science Direct, v. 347, p. 193-200, 2018. Disponível em: https://doi.org/10.1016/j.bbr.2018.03.023. Acesso em: 28 set. 2022.

MENDES, K. D. S.; SILVEIRA, R. C. C. P.; GALVÃO, M. C. Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & Contexto: Enfermagem, v. 17, n. 4, p. 758-64, dez. 2008. Disponível em: https://doi.org/10.1590/S0104-07072008000400018. Acesso em: 28 set. 2022.

MENEZES, T. R. de; AMORIM, A. R. A.; BLASCOVI-ASSIS, S. M. Atividade física e lazer na síndrome de Down: uma revisão integrativa. Cadernos de Pós-Graduação em Distúrbio do Desenvolvimento, v. 21, n. 1, p. 144-165, 2021. Disponível em: http://dx.doi.org/10.5935/cadernosdisturbios.v21n1p144-165. Acesso em: 28 set. 2022.

MONTOYA, J. G.; LIESENFELD, O. Toxoplasmosis. Lancet, v. 363, n. 9425, p. 1965-1976, jun. 2004. Disponível em: http://dx.doi.org/10.1016/S0140-6736(04)16412-X. Acesso em: 28 set.2022.

PARLOG, A.; SCHLUTER D.; DUNAY I. R. Toxoplasma gondii-induced neuronal alterations. Parasite Immunology, v. 37, n. 3, p. 159-70, mar. 2015. Disponível em: http://dx.doi.org/10.1111/pim.12157. Acesso em: 28 set. 2022.

PRANDOVSZKY, E. et al. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One. v. 6, n. 9, e23866, 2011. Disponível em: http://dx.doi.org/10.1371/journal.pone.0023866. Acesso em: 28 set. 2022.

SALVIONI, A. et al. Robust control of a brain- persinting parasite through MHC I presentation by infected neurons. Cell Reports, v. 27, n. 11, p. 3254-3268, jun. 2019. Disponível em: http://doi.org/10.1016/j.celrep.2019.05.051. Acesso em: 28 set. 2022.

SHWAB, E. K. et al. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology, v. 141, n. 4, p. 453-61, abr. 2014. Disponível em: http://doi.org/10.1017/S0031182013001844. Acesso em: 28 set. 2022.

SOUZA, W. et al. Organização estrutural do taquizoíto de Toxoplasma gondii. Scientia Medica, v. 20, n. 1, p. 131-143, 2010. Disponível em: http://doi.org/10.7476/9788575415719.0005. Acesso em: 28 set. 2022.

STUMHOFER, J. S.; SILVER, J. S.; HUNTER, C. A. IL-21 is required for optimal antibody production and T cell responses during chronic Toxoplasma gondii infection. PLoS One, v. 8, n. 5, e62889, 2013. Disponível em: http://doi.org/10.1371/journal.pone.0062889. Acesso em: 28 set. 2022.

TEDLA, Y. et al. Serum antibodies to Toxoplasma gondii and herpesvidae family viruses in individuals with schizophrenia and bipolar disorder: a case-control study. Ethiopian Medical Journal, v. 49, n. 3, p. 211-2020, 2011.

TENTER, A. M.; HECKEROTH, A. R.; WEISS, L. M. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, v. 30, n. 13, p. 1217-1430, nov. 2000. Disponível em: https://doi.org/10.1016/s0020-7519(00)00124-7. Acesso em: 28 set. 2022.

TORREY, E. F.; YOLKEN, R. H. Toxoplasma gondii and Schizophrenia. Emerging Infectious Diseases, v. 3, n. 9, p. 1375-13809, nov. 2003. Disponível em: https://doi.org/10.3201%2Feid0911.030143. Acesso em: 28 set. 2022.

WANG, T. et al. From inflammatory reactions to neurotransmitter changes: implications for understanding the neurobehavioral changes in mice chronically infected with toxoplasma gondii. Science Direct, v. 359, p. 737-748, 2019. Disponível em: https://doi.org/10.1016/j.bbr.2018.09.011. Acesso em: 28 set. 2022.

WEISS, L. M.; DUBEY, J. P. Toxoplasmosis: a history of clinical observations. International Journal of Parasitology, v. 38, n. 8, p. 895-901, fev. 2009. Disponível em: https://doi.org/10.1016/j.ijpara.2009.02.004. Acesso em: 28 set. 2022.

Published

2022-11-08

Issue

Section

Artigos