Econofísica e finanças: Estudo Bibliométrico Nacional e Internacional

Autores/as

  • Daniel Pereira Alves de Abreu Universidade Federal de Minas Gerais
  • Marcos Antônio de Camargos Universidade Federal de Minas Gerais
  • Aureliano Angel Bressan Universidade Federal de Minas Gerais

Palabras clave:

Estudo Bibliométrico, Econofísica, Finanças, Fractais, Econometria

Resumen

O objetivo deste estudo é analisar, através de um estudo bibliométrico, os trabalhos publicados no campo da econofísica, uma adaptação das modelagens da física para análise financeira. O levantamento bibliográfico foi realizado em duas importantes bases, Scopus e Web of Science, sendo a análise realizada em 2.351 artigos, publicados entre 1900 e 2024, através do pacote Bibliometrix do software R. Os resultados apontam que o Estados Unidos e China são países com maiores publicações sobre o tema, embora o Brasil tenha um volume relevante de publicações. Ademais, a maioria dos estudos é publicada em revistas de física aplicada, com grande enfoque nos aspectos metodológicos, com tendências atuais para publicações sobre incerteza, entropia e dinamismo. Por fim, foi verificada a expansão do volume de trabalhos publicados e desenvolvimento de novos estudos, sinalizando assim a ascensão dessa vertente bem como seu potencial para avanços e aplicações na área de finanças.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Daniel Pereira Alves de Abreu, Universidade Federal de Minas Gerais

Doutorando do Centro de Pós-Graduação e Pesquisas em Administração – CEPEAD da Universidade Federal de Minas Gerais.

Marcos Antônio de Camargos, Universidade Federal de Minas Gerais

Professor Associado do Departamento de Ciências Administrativas – CAD e do Centro de Pós-Graduação e Pesquisas em Administração – CEPEAD da Universidade Federal de Minas Gerais

Aureliano Angel Bressan, Universidade Federal de Minas Gerais

Professor Titular do Departamento de Ciências Administrativas – CAD, do Pós-Graduação e Pesquisas em Administração – CEPEAD  e de Contabilidade – CEPCON da Universidade Federal de Minas Gerais

Citas

Akgiray, V., & Booth, G. G. (1988). The Siable-Law Model of Stock Returns. Journal of Business & Economic Statistics, 6(1), 51–57. https://doi.org/10.1080/07350015.1988.10509636

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Bachelier, L. (1900). Théorie de la spéculation. Annales scientifiques de l’École Normale Supérieure, 17, 21–86. https://doi.org/10.24033/asens.476

Backhouse, R. E., & Morgan, M. S. (2000). Introduction: Is data mining a methodological problem? Journal of Economic Methodology, 7(2), 171–181. https://doi.org/10.1080/13501780050045065

Bacry, E., Delour, J., & Muzy, J. F. (2001). Modelling financial time series using multifractal random walks. Physica A: Statistical Mechanics and Its Applications, 299(1), 84–92. https://doi.org/10.1016/S0378-4371(01)00284-9

Barbosa, L. M., & Silva, R. S. R. da. (2019). Sobre pensamento computacional na construção de um Triângulo de Sierpinski com o GeoGebra. Pesquisa e Debate em Educação, 9(1), Artigo 1. https://doi.org/10.34019/2237-9444.2019.v9.31129

Berger, W., Hokamp, S., & Seibold, G. (2021). Dynamic behavioural changes in an agent-based econophysics tax compliance model: Bomb crater versus target effects and efficient audit strategies. Journal of Public Finance and Public Choice, 36(1), 3–24. https://doi.org/10.1332/251569120X15840237292628

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637–654.

Blattberg, R. C., & Gonedes, N. J. (2010). A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices. Em G. M. Allenby, Perspectives on Promotion and Database Marketing (p. 25–61). WORLD SCIENTIFIC. https://doi.org/10.1142/9789814287067_0003

Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173. https://doi.org/10.1007/s11192-006-0147-4

Calvet, L. E., & Fisher, A. J. (2012). Extreme Risk and Fractal Regularity in Finance (SSRN Scholarly Paper 2126466). Social Science Research Network. https://doi.org/10.2139/ssrn.2126466

Calvet, L., & Fisher, A. (2002). Multifractality in Asset Returns: Theory and Evidence. The Review of Economics and Statistics, 84(3), 381–406. https://doi.org/10.1162/003465302320259420

Caporale, G. M., Gil-Alana, L., Plastun, A., & Makarenko, I. (2016). Long memory in the Ukrainian stock market and financial crises. Journal of Economics and Finance, 40(2), 235–257. https://doi.org/10.1007/s12197-014-9299-x

Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science, 9(5), Artigo 5. https://doi.org/10.5539/ass.v9n5p18

Chakraborti, A., Toke, I. M., Patriarca, M., & Abergel, F. (2011). Econophysics review: I. Empirical facts. Quantitative Finance, 11(7), 991–1012. https://doi.org/10.1080/14697688.2010.539248

Dacorogna, M. M., Müller, U. A., Nagler, R. J., Olsen, R. B., & Pictet, O. V. (1993). A geographical model for the daily and weekly seasonal volatility in the foreign exchange market. Journal of International Money and Finance, 12(4), 413–438. https://doi.org/10.1016/0261-5606(93)90004-U

Dima, B., Dima, Ş. M., & Ioan, R. (2021). Remarks on the behaviour of financial market efficiency during the COVID-19 pandemic. The case of VIX. Finance Research Letters, 43, 101967. https://doi.org/10.1016/j.frl.2021.101967

Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83–106. https://doi.org/10.1016/0927-5398(93)90006-D

Dubovikov, M. M., Starchenko, N. V., & Dubovikov, M. S. (2004). Dimension of the minimal cover and fractal analysis of time series. Physica A: Statistical Mechanics and Its Applications, 339(3), 591–608. https://doi.org/10.1016/j.physa.2004.03.025

Elliot, R. N. (1938). The wave principle. Em R. R. Prechter, Elliot’s Masterworks (1o ed, p. 83–150). New Classics Library.

Fama, E. F. (1970). Efficient Capital Markets A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.7208/9780226426983-007

Fama, E. F. (1991). Efficient Capital Markets: II. The Journal of Finance, 46(5), 1575–1617. https://doi.org/10.1111/j.1540-6261.1991.tb04636.x

Grech, D. (2016). Alternative measure of multifractal content and its application in finance. Chaos, Solitons & Fractals, 88, 183–195. https://doi.org/10.1016/j.chaos.2016.02.017

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102

Hoover, K. D., & Perez, S. J. (2000). Three attitudes towards data mining. Journal of Economic Methodology, 7(2), 195–210. https://doi.org/10.1080/13501780050045083

Jiang, Z.-Q., Xie, W.-J., Zhou, W.-X., & Sornette, D. (2019). Multifractal analysis of financial markets: A review. Reports on Progress in Physics, 82(12), 125901. https://doi.org/10.1088/1361-6633/ab42fb

Jovanovic, F., & Schinckus, C. (2013). The Emergence of Econophysics: A New Approach in Modern Financial Theory. History of Political Economy, 45(3), 443–474. https://doi.org/10.1215/00182702-2334758

Karp, A., & Van Vuuren, G. (2019). Investment implications of the fractal market hypothesis. Annals of Financial Economics, 14(01), 1950001. https://doi.org/10.1142/S2010495219500015

Kristoufek, L., & Vosvrda, M. (2013). Measuring capital market efficiency: Global and local correlations structure. Physica A: Statistical Mechanics and Its Applications, 392(1), 184–193. https://doi.org/10.1016/j.physa.2012.08.003

Kristoufek, L., & Vosvrda, M. (2014). Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy. The European Physical Journal B, 87(7), 162. https://doi.org/10.1140/epjb/e2014-50113-6

Kwapień, J., & Drożdż, S. (2012). Physical approach to complex systems. Physics Reports, 515(3), 115–226. https://doi.org/10.1016/j.physrep.2012.01.007

Lévy, P. (1924). Théorie des erreurs. La loi de Gauss et les lois exceptionnelles. Bulletin de la Société Mathématique de France, 52, 49–85. https://doi.org/10.24033/bsmf.1046

Lima, L. S., & Oliveira, S. C. (2020). Two-dimensional stochastic dynamics as model for time evolution of the financial market. Chaos, Solitons & Fractals, 136, 109792. https://doi.org/10.1016/j.chaos.2020.109792

Mandelbrot, B. (1963). New Methods in Statistical Economics. Journal of Political Economy, 71(5), 421–440. https://doi.org/10.1086/258792

Mandelbrot, B. (1967). The Variation of Some Other Speculative Prices. The Journal of Business, 40(4), 393–413.

Mandelbrot, B. B. (1999). A Multifractal Walk down Wall Street. Scientific American, 280(2), 70–73.

Mandelbrot, B. B., Fisher, A. J., & Calvet, L. E. (1997). A Multifractal Model of Asset Returns (SSRN Scholarly Paper 78588). Social Science Research Network. https://papers.ssrn.com/abstract=78588

Mandelbrot, B. B., & Hudson, R. L. (2004). The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward. Profile Books.

Mantegna, R. N. (1991). Lévy walks and enhanced diffusion in Milan stock exchange. Physica A: Statistical Mechanics and its Applications, 179(2), 232–242. https://doi.org/10.1016/0378-4371(91)90061-G

Mantegna, R. N., & Kertész, J. (2011). Focus on Statistical Physics Modeling in Economics and Finance. New Journal of Physics, 13(2), 025011. https://doi.org/10.1088/1367-2630/13/2/025011

McCauley, J. L. (2004). Dynamics of Markets: Econophysics and Finance. Cambridge University Press.

McCauley, J. L. (2006). Response to “Worrying Trends in Econophysics”. Physica A: Statistical Mechanics and Its Applications, 371(2), 601–609. https://doi.org/10.1016/j.physa.2006.05.043

Nekrasova, I., Karnaukhova, O., & Sviridov, O. (2018). Fractal properties of financial assets and forcasting financial crisis. Em Fractal approaches for modeling financial assets and predicting crises (p. 23–41). IGI Global. https://doi.org/10.4018/978-1-5225-3767-0.ch002

Noyons, E. c. m., Moed, H. f., & Luwel, M. (1999). Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. Journal of the American Society for Information Science, 50(2), 115–131. https://doi.org/10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.0.CO;2-J

Peters, E. E. (1994). Fractal market analysis: Applying caos theory to investment and economics (1o ed). Willey.

Powell, K. R., & Peterson, S. R. (2017). Coverage and quality: A comparison of Web of Science and Scopus databases for reporting faculty nursing publication metrics. Nursing Outlook, 65(5), 572–578. https://doi.org/10.1016/j.outlook.2017.03.004

Rickles, D. (2007). Econophysics for philosophers. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(4), 948–978. https://doi.org/10.1016/j.shpsb.2007.01.003

Rickles, D. (2011). Econophysics and the Complexity of Financial Markets. Em C. Hooker (Org.), Philosophy of Complex Systems (Vol. 10, p. 531–565). North-Holland. https://doi.org/10.1016/B978-0-444-52076-0.50019-5

Schadner, W. (2021). On the persistence of market sentiment: A multifractal fluctuation analysis. Physica A: Statistical Mechanics and Its Applications, 581, 126242. https://doi.org/10.1016/j.physa.2021.126242

Schinckus, C. (2016). 1996–2016: Two decades of econophysics: Between methodological diversification and conceptual coherence. The European Physical Journal Special Topics, 225(17), 3299–3311. https://doi.org/10.1140/epjst/e2016-60099-y

Sornette, D. (2014). Physics and financial economics (1776–2014): Puzzles, Ising and agent-based models. Reports on Progress in Physics, 77(6), 062001. https://doi.org/10.1088/0034-4885/77/6/062001

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464

Trajtel, E., Tomkova, V., & Kružlík, P. (2017). Journals in the field “Language and Literature” indexed in Web of Science and Scopus databases. Verification of results of the scientific research in publishing technique. X Linguae, 10(4), 245–249. https://doi.org/10.18355/XL.2017.10.04.20

Vandewalle, N., & Ausloos, M. (1998). Multi-affine analysis of typical currency exchange rates. The European Physical Journal B - Condensed Matter and Complex Systems, 4(2), 257–261. https://doi.org/10.1007/s100510050376

Zhou, W.-X., & Sornette, D. (2007). Self-organizing Ising model of financial markets. The European Physical Journal B, 55(2), 175–181. https://doi.org/10.1140/epjb/e2006-00391-6

Publicado

2025-12-03

Cómo citar

Pereira Alves de Abreu, D., de Camargos, M. A., & Angel Bressan, A. (2025). Econofísica e finanças: Estudo Bibliométrico Nacional e Internacional. Revista De Economia Mackenzie, 22(2), 37–67. Recuperado a partir de http://editorarevistas.mackenzie.br/index.php/rem/article/view/17410