Econofísica e finanças: Estudo Bibliométrico Nacional e Internacional

Auteurs

  • Daniel Pereira Alves de Abreu Universidade Federal de Minas Gerais
  • Marcos Antônio de Camargos Universidade Federal de Minas Gerais
  • Aureliano Angel Bressan Universidade Federal de Minas Gerais

Mots-clés :

Estudo Bibliométrico, Econofísica, Finanças, Fractais, Econometria

Résumé

O objetivo deste estudo é analisar, através de um estudo bibliométrico, os trabalhos publicados no campo da econofísica, uma adaptação das modelagens da física para análise financeira. O levantamento bibliográfico foi realizado em duas importantes bases, Scopus e Web of Science, sendo a análise realizada em 2.351 artigos, publicados entre 1900 e 2024, através do pacote Bibliometrix do software R. Os resultados apontam que o Estados Unidos e China são países com maiores publicações sobre o tema, embora o Brasil tenha um volume relevante de publicações. Ademais, a maioria dos estudos é publicada em revistas de física aplicada, com grande enfoque nos aspectos metodológicos, com tendências atuais para publicações sobre incerteza, entropia e dinamismo. Por fim, foi verificada a expansão do volume de trabalhos publicados e desenvolvimento de novos estudos, sinalizando assim a ascensão dessa vertente bem como seu potencial para avanços e aplicações na área de finanças.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur

Daniel Pereira Alves de Abreu, Universidade Federal de Minas Gerais

Doutorando do Centro de Pós-Graduação e Pesquisas em Administração – CEPEAD da Universidade Federal de Minas Gerais.

Marcos Antônio de Camargos, Universidade Federal de Minas Gerais

Professor Associado do Departamento de Ciências Administrativas – CAD e do Centro de Pós-Graduação e Pesquisas em Administração – CEPEAD da Universidade Federal de Minas Gerais

Aureliano Angel Bressan, Universidade Federal de Minas Gerais

Professor Titular do Departamento de Ciências Administrativas – CAD, do Pós-Graduação e Pesquisas em Administração – CEPEAD  e de Contabilidade – CEPCON da Universidade Federal de Minas Gerais

Références

Akgiray, V., & Booth, G. G. (1988). The Siable-Law Model of Stock Returns. Journal of Business & Economic Statistics, 6(1), 51–57. https://doi.org/10.1080/07350015.1988.10509636

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Bachelier, L. (1900). Théorie de la spéculation. Annales scientifiques de l’École Normale Supérieure, 17, 21–86. https://doi.org/10.24033/asens.476

Backhouse, R. E., & Morgan, M. S. (2000). Introduction: Is data mining a methodological problem? Journal of Economic Methodology, 7(2), 171–181. https://doi.org/10.1080/13501780050045065

Bacry, E., Delour, J., & Muzy, J. F. (2001). Modelling financial time series using multifractal random walks. Physica A: Statistical Mechanics and Its Applications, 299(1), 84–92. https://doi.org/10.1016/S0378-4371(01)00284-9

Barbosa, L. M., & Silva, R. S. R. da. (2019). Sobre pensamento computacional na construção de um Triângulo de Sierpinski com o GeoGebra. Pesquisa e Debate em Educação, 9(1), Artigo 1. https://doi.org/10.34019/2237-9444.2019.v9.31129

Berger, W., Hokamp, S., & Seibold, G. (2021). Dynamic behavioural changes in an agent-based econophysics tax compliance model: Bomb crater versus target effects and efficient audit strategies. Journal of Public Finance and Public Choice, 36(1), 3–24. https://doi.org/10.1332/251569120X15840237292628

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637–654.

Blattberg, R. C., & Gonedes, N. J. (2010). A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices. Em G. M. Allenby, Perspectives on Promotion and Database Marketing (p. 25–61). WORLD SCIENTIFIC. https://doi.org/10.1142/9789814287067_0003

Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173. https://doi.org/10.1007/s11192-006-0147-4

Calvet, L. E., & Fisher, A. J. (2012). Extreme Risk and Fractal Regularity in Finance (SSRN Scholarly Paper 2126466). Social Science Research Network. https://doi.org/10.2139/ssrn.2126466

Calvet, L., & Fisher, A. (2002). Multifractality in Asset Returns: Theory and Evidence. The Review of Economics and Statistics, 84(3), 381–406. https://doi.org/10.1162/003465302320259420

Caporale, G. M., Gil-Alana, L., Plastun, A., & Makarenko, I. (2016). Long memory in the Ukrainian stock market and financial crises. Journal of Economics and Finance, 40(2), 235–257. https://doi.org/10.1007/s12197-014-9299-x

Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science, 9(5), Artigo 5. https://doi.org/10.5539/ass.v9n5p18

Chakraborti, A., Toke, I. M., Patriarca, M., & Abergel, F. (2011). Econophysics review: I. Empirical facts. Quantitative Finance, 11(7), 991–1012. https://doi.org/10.1080/14697688.2010.539248

Dacorogna, M. M., Müller, U. A., Nagler, R. J., Olsen, R. B., & Pictet, O. V. (1993). A geographical model for the daily and weekly seasonal volatility in the foreign exchange market. Journal of International Money and Finance, 12(4), 413–438. https://doi.org/10.1016/0261-5606(93)90004-U

Dima, B., Dima, Ş. M., & Ioan, R. (2021). Remarks on the behaviour of financial market efficiency during the COVID-19 pandemic. The case of VIX. Finance Research Letters, 43, 101967. https://doi.org/10.1016/j.frl.2021.101967

Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83–106. https://doi.org/10.1016/0927-5398(93)90006-D

Dubovikov, M. M., Starchenko, N. V., & Dubovikov, M. S. (2004). Dimension of the minimal cover and fractal analysis of time series. Physica A: Statistical Mechanics and Its Applications, 339(3), 591–608. https://doi.org/10.1016/j.physa.2004.03.025

Elliot, R. N. (1938). The wave principle. Em R. R. Prechter, Elliot’s Masterworks (1o ed, p. 83–150). New Classics Library.

Fama, E. F. (1970). Efficient Capital Markets A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.7208/9780226426983-007

Fama, E. F. (1991). Efficient Capital Markets: II. The Journal of Finance, 46(5), 1575–1617. https://doi.org/10.1111/j.1540-6261.1991.tb04636.x

Grech, D. (2016). Alternative measure of multifractal content and its application in finance. Chaos, Solitons & Fractals, 88, 183–195. https://doi.org/10.1016/j.chaos.2016.02.017

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102

Hoover, K. D., & Perez, S. J. (2000). Three attitudes towards data mining. Journal of Economic Methodology, 7(2), 195–210. https://doi.org/10.1080/13501780050045083

Jiang, Z.-Q., Xie, W.-J., Zhou, W.-X., & Sornette, D. (2019). Multifractal analysis of financial markets: A review. Reports on Progress in Physics, 82(12), 125901. https://doi.org/10.1088/1361-6633/ab42fb

Jovanovic, F., & Schinckus, C. (2013). The Emergence of Econophysics: A New Approach in Modern Financial Theory. History of Political Economy, 45(3), 443–474. https://doi.org/10.1215/00182702-2334758

Karp, A., & Van Vuuren, G. (2019). Investment implications of the fractal market hypothesis. Annals of Financial Economics, 14(01), 1950001. https://doi.org/10.1142/S2010495219500015

Kristoufek, L., & Vosvrda, M. (2013). Measuring capital market efficiency: Global and local correlations structure. Physica A: Statistical Mechanics and Its Applications, 392(1), 184–193. https://doi.org/10.1016/j.physa.2012.08.003

Kristoufek, L., & Vosvrda, M. (2014). Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy. The European Physical Journal B, 87(7), 162. https://doi.org/10.1140/epjb/e2014-50113-6

Kwapień, J., & Drożdż, S. (2012). Physical approach to complex systems. Physics Reports, 515(3), 115–226. https://doi.org/10.1016/j.physrep.2012.01.007

Lévy, P. (1924). Théorie des erreurs. La loi de Gauss et les lois exceptionnelles. Bulletin de la Société Mathématique de France, 52, 49–85. https://doi.org/10.24033/bsmf.1046

Lima, L. S., & Oliveira, S. C. (2020). Two-dimensional stochastic dynamics as model for time evolution of the financial market. Chaos, Solitons & Fractals, 136, 109792. https://doi.org/10.1016/j.chaos.2020.109792

Mandelbrot, B. (1963). New Methods in Statistical Economics. Journal of Political Economy, 71(5), 421–440. https://doi.org/10.1086/258792

Mandelbrot, B. (1967). The Variation of Some Other Speculative Prices. The Journal of Business, 40(4), 393–413.

Mandelbrot, B. B. (1999). A Multifractal Walk down Wall Street. Scientific American, 280(2), 70–73.

Mandelbrot, B. B., Fisher, A. J., & Calvet, L. E. (1997). A Multifractal Model of Asset Returns (SSRN Scholarly Paper 78588). Social Science Research Network. https://papers.ssrn.com/abstract=78588

Mandelbrot, B. B., & Hudson, R. L. (2004). The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward. Profile Books.

Mantegna, R. N. (1991). Lévy walks and enhanced diffusion in Milan stock exchange. Physica A: Statistical Mechanics and its Applications, 179(2), 232–242. https://doi.org/10.1016/0378-4371(91)90061-G

Mantegna, R. N., & Kertész, J. (2011). Focus on Statistical Physics Modeling in Economics and Finance. New Journal of Physics, 13(2), 025011. https://doi.org/10.1088/1367-2630/13/2/025011

McCauley, J. L. (2004). Dynamics of Markets: Econophysics and Finance. Cambridge University Press.

McCauley, J. L. (2006). Response to “Worrying Trends in Econophysics”. Physica A: Statistical Mechanics and Its Applications, 371(2), 601–609. https://doi.org/10.1016/j.physa.2006.05.043

Nekrasova, I., Karnaukhova, O., & Sviridov, O. (2018). Fractal properties of financial assets and forcasting financial crisis. Em Fractal approaches for modeling financial assets and predicting crises (p. 23–41). IGI Global. https://doi.org/10.4018/978-1-5225-3767-0.ch002

Noyons, E. c. m., Moed, H. f., & Luwel, M. (1999). Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. Journal of the American Society for Information Science, 50(2), 115–131. https://doi.org/10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.0.CO;2-J

Peters, E. E. (1994). Fractal market analysis: Applying caos theory to investment and economics (1o ed). Willey.

Powell, K. R., & Peterson, S. R. (2017). Coverage and quality: A comparison of Web of Science and Scopus databases for reporting faculty nursing publication metrics. Nursing Outlook, 65(5), 572–578. https://doi.org/10.1016/j.outlook.2017.03.004

Rickles, D. (2007). Econophysics for philosophers. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(4), 948–978. https://doi.org/10.1016/j.shpsb.2007.01.003

Rickles, D. (2011). Econophysics and the Complexity of Financial Markets. Em C. Hooker (Org.), Philosophy of Complex Systems (Vol. 10, p. 531–565). North-Holland. https://doi.org/10.1016/B978-0-444-52076-0.50019-5

Schadner, W. (2021). On the persistence of market sentiment: A multifractal fluctuation analysis. Physica A: Statistical Mechanics and Its Applications, 581, 126242. https://doi.org/10.1016/j.physa.2021.126242

Schinckus, C. (2016). 1996–2016: Two decades of econophysics: Between methodological diversification and conceptual coherence. The European Physical Journal Special Topics, 225(17), 3299–3311. https://doi.org/10.1140/epjst/e2016-60099-y

Sornette, D. (2014). Physics and financial economics (1776–2014): Puzzles, Ising and agent-based models. Reports on Progress in Physics, 77(6), 062001. https://doi.org/10.1088/0034-4885/77/6/062001

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464

Trajtel, E., Tomkova, V., & Kružlík, P. (2017). Journals in the field “Language and Literature” indexed in Web of Science and Scopus databases. Verification of results of the scientific research in publishing technique. X Linguae, 10(4), 245–249. https://doi.org/10.18355/XL.2017.10.04.20

Vandewalle, N., & Ausloos, M. (1998). Multi-affine analysis of typical currency exchange rates. The European Physical Journal B - Condensed Matter and Complex Systems, 4(2), 257–261. https://doi.org/10.1007/s100510050376

Zhou, W.-X., & Sornette, D. (2007). Self-organizing Ising model of financial markets. The European Physical Journal B, 55(2), 175–181. https://doi.org/10.1140/epjb/e2006-00391-6

Téléchargements

Publiée

2025-12-03

Comment citer

Pereira Alves de Abreu, D., de Camargos, M. A., & Angel Bressan, A. (2025). Econofísica e finanças: Estudo Bibliométrico Nacional e Internacional. Revista De Economia Mackenzie, 22(2), 37–67. Consulté à l’adresse http://editorarevistas.mackenzie.br/index.php/rem/article/view/17410