Aplicabilidade da Estimulação Elétrica Funcional nas Diferentes Disfunções Motoras de Origem Neurológica: Uma Revisão Narrativa
Palavras-chave:
Estimulação elétrica, Eletroterapia, Transtornos das habilidades motoras, Prática clínica baseada em evidências, Procedimento terapêuticoResumo
A eletroestimulação funcional (Functional Electrical Stimulation – FES) tem se tornado uma importante intervenção para recuperação da estrutura e função muscular, promovendo contrações com potencial de gerar movimentos funcionais, como utilizar uma caneta para escrever, levar um copo d’água à boca e até mesmo caminhar. Embora haja uma vasta evidência acerca dos benefícios da FES, faz-se necessário compreender sua aplicação nas diferentes disfunções motoras, assim como os parâmetros utilizados em cada uma delas. O objetivo deste estudo foi revisar na literatura as aplicabilidades da FES nas diferentes disfunções motoras de origem neurológica. Trata-se de uma revisão narrativa baseada numa ampla busca nas bases de dados de estudos realizados com a utilização da FES em diferentes disfunções motoras, independentemente da patologia. Foram encontradas diversas possibilidades de uso da FES, sendo estruturadas neste estudo partindo das informações gerais sobre FES, desde os equipamentos e suas programações, instalação e tipos de eletrodos, frequência, largura de pulso e tempo de aplicação; FES para disfunções do membro superior e inferior hemi/ paraparético; e FES nos transtornos de movimento. Frequentemente encontrada como ferramenta para reabilitação de pessoas com acidente vascular cerebral, paralisia cerebral e lesão medular, este artigo aborda informações sobre a forma e a segurança na aplicação da FES. No entanto, os estudos publicados possuem baixo tamanho amostral e qualidade metodológica para indicação clínica. Ensaios clínicos randomizados mais robustos são imprescindíveis para fortalecer as indicações da FES, além de evidenciar a importância dessa abordagem tanto de forma isolada quanto de forma conjunta na utilização de órteses estáticas ou dinâmicas. A FES pode ser uma valiosa aliada na reabilitação de disfunções motoras.
Downloads
Referências
ARYA, K. N.; PANDIAN, S.; PURI, V. Rehabilitation methods for reducing shoulder subluxation in post-stroke hemiparesis: a systematic review. Topics in Stroke Rehabilitation, v. 25, n. 1, jan. 2018. DOI 10.1080/10749357.2017.1383712
BECK, E. K. et al. Efeitos da estimulação elétrica funcional no controle neuromuscular artificial. Revista Neurociências, v. 19, n. 3, p. 530-541, 30 set. 2011. DOI 10.4181/ RNC.2010.06ip.11
BHIDAYASIRI, R. Differential diagnosis of common tremor syndromes. Postgraduate Medical Journal, v. 81, n. 962, dez. 2005. DOI https://doi.org/10.1136/pgmj. 2005.032979
BOLOGNA, M. et al. Evolving concepts on bradykinesia. Brain: A Journal of Neurology, v. 143, n. 3, p. 727-750, 1º mar. 2020. DOI 10.1093/brain/awz344
CECATTO, R. B.; CHADI, G. Functional electrical stimulation (FES) and neuronal plasticity: a historical review. Acta Fisiátrica, v. 19, n. 4, p. 246-257, 2012. DOI 10.5935/0104-7795.20120040
CHANDRAN, V.; PAL, P. K. Quality of life and its determinants in essential tremor. Parkinsonism & Related Disorders, v. 19, n. 1, jan. 2013. DOI 10.1016/j.parkreldis.2012.06.011
CUNHA, M. J. DA et al. Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, v. 64, n. 1, p. 101388, 2021. DOI 10.1016/j.rehab.2020.03.012
DAVIS, G. M.; HAMZAID, N. A.; FORNUSEK, C. Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits. Artificial Organs, v. 32, n. 8, p. 625-629, Aug. 2008. DOI 10.1111/j.1525-1594.2008.00622.x
DEUSCHL, G.; BAIN, P.; BRIN, M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Movement Disorders, v. 13, Sup. 3, p. 2-23,1998. DOI 10.1002/mds.870131303
DOUCET, B. M.; LAM, A.; GRIFFIN, L. Neuromuscular electrical stimulation for skeletal muscle function. The Yale Journal of Biology and Medicine, v. 85, n. 2, p. 201-215, jun. 2012.
ENOKA, R. M.; AMIRIDIS, I. G.; DUCHATEAU, J. Electrical stimulation of muscle: electrophysiology and rehabilitation. Physiology, v. 35, n. 1, p. 40-56, 1º jan. 2020. DOI 10.1152/physiol.00015.2019
FANG, Y. et al. Optimization of electrical stimulation for the treatment of lower limb dysfunction after stroke: a systematic review and Bayesian network meta-analysis of randomized controlled trials. PLoS One, v. 18, n. 5, p. e0285523, 2023. DOI 10.1371/ journal.pone.0285523
GALLEGO, J. A. et al. A soft wearable robot for tremor assessment and suppression. IEEE International Conference on Robotics and Automation, p. 2249-2254, 2011. DOI 10.1109/ICRA.2011.5979639
GARZON, L. C. et al. The use of functional electrical stimulation to improve upper limb function in children with hemiplegic cerebral palsy: a feasibility study. Journal of Rehabilitation and Assistive Technologies Engineering, v. 5, dez./jan. 2018. DOI 10.1177/2055668318768402
GIANGREGORIO, L. et al. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. The Journal of Spinal Cord Medicine, v. 35, n. 5, p. 351-360, set. 2012. DOI 10.1179/ 2045772312Y.0000000041
GOBBO, M. et al. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. Journal of Neuroengineering and Rehabilitation, v. 11, p. 17, 25 fev. 2014. DOI 10.1186/1743-0003-11-17
GRIMALDI, G.; FERNANDEZ, A.; MANTO, M. Augmented visual feedback counteracts the effects of surface muscular functional electrical stimulation on physiological tremor. Journal of Neuroengineering and Rehabilitation, v. 10, p. 100, 24 set. 2013. DOI 10.1186/1743-0003-10-100
GUNN, H. et al. Frequency, characteristics, and consequences of falls in multiple sclerosis: findings from a cohort study. Archives of Physical Medicine and Rehabilitation, v. 95, n. 3, p. 538-545, mar. 2014. DOI 10.1016/j.apmr.2013.08.244
HALLMAN-COOPER, J. L.; CABRERO, F. R. Cerebral palsy. StatPearls [Internet], [s.l.] StatPearls Publishing, 2022.
HO, C. H. et al. Functional electrical stimulation and spinal cord injury. Physical Medicine and Rehabilitation Clinics of North America, v. 25, n. 3, p. 631, ago. 2014. DOI 10.1016/j.pmr.2014.05.001
HOBART, J. et al. Timed 25-foot walk: direct evidence that improving 20% or greater is clinically meaningful in MS. Neurology, v. 80, n. 16, p. 1509-1517, 16 abr. 2013. DOI 10.1212/WNL.0b013e31828cf7f3
IJZERMAN, M. J.; RENZENBRINK, G. J.; GEURTS, A. C. H. Neuromuscular stimulation after stroke: from technology to clinical deployment. Expert Review of Neurotherapeutics, v. 9, n. 4, p. 541-552, abr. 2009. DOI 10.1586/ern.09.6
JANG, E. M.; PARK, S. H. Effects of neuromuscular electrical stimulation combined with exercises versus an exercise program on the physical characteristics and functions of the elderly: a randomized controlled trial. International Journal of Environmental Research and Public Health, v. 18, n. 5, 3 mar. 2021. DOI 10.3390/ijerph18052463
KAMBLE, N.; PAL, P. K. Tremor syndromes: a review. Neurology India, v. 66, n. Supplement, mar. 2018. DOI 10.4103/0028-3886.226440
KAPADIA, N. et al. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking competency. The Journal of Spinal Cord Medicine, v. 37, n. 5, p. 511-524, set. 2014. DOI 10.1179/2045772314Y.0000000263
KAPADIA, N. M. et al. Functional electrical stimulation therapy for grasping in traumatic incomplete spinal cord injury: randomized control trial. Artificial Organs, v. 35, n. 3, p. 212-216, mar. 2011. DOI 10.1111/j.1525-1594.2011.01216.x
KARAAHMET, O. Z. et al. Effects of functional electrical stimulation-cycling on shoulder pain and subluxation in patients with acute-subacute stroke: a pilot study. International Journal of Rehabilitation Research, v. 42, n. 1, p. 36-40, 2019. DOI 10.1097/ MRR.0000000000000319
KARAMESINIS, A.; SILLITOE, R. V.; KOUZANI, A. Z. Wearable peripheral electrical stimulation devices for the reduction of essential tremor: a review. IEEE Access: Practical Innovations, Open Solutions, v. 9, p. 80066-80076, 28 maio 2021. DOI 10.1109/access.2021.3084819
KIM, J. et al. A wearable system for attenuating essential tremor based on peripheral nerve stimulation. IEEE Journal of Translational Engineering in Health and Medicine, v. 8, p. 2000111, 6 abr. 2020. DOI 10.1109/JTEHM.2020.2985058
KURODA, M. M. et al. Voluntary-assisted upper limb training for severe cerebral palsy using robotics devices and neuromuscular electrical stimulation: three case reports. Progress in Rehabilitation Medicine, v. 7, 15 set. 2022. DOI 10.2490/prm.20220050
LOUIS, E. D.; MACHADO, D. G. Tremor-related quality of life: a comparison of essential tremor vs. Parkinson’s disease patients. Parkinsonism & Related Disorders, v. 21, n. 7, p. 729-735, 1º jul. 2015. DOI 10.1016/j.parkreldis.2015.04.019
MAFFIULETTI, N. A. et al. Clinical use of neuromuscular electrical stimulation for neuromuscular rehabilitation: what are we overlooking? Archives of Physical Medicine and Rehabilitation, v. 99, n. 4, p. 806-812, 2018. DOI 10.1016/j.apmr.2017.10.028
MANN, G. E.; FINN, S. M.; TAYLOR, P. N. A pilot study to investigate the feasibility of electrical stimulation to assist gait in Parkinson’s disease. Neuromodulation: Journal of the International Neuromodulation Society, v. 11, n. 2, p. 143-149, abr. 2008. DOI 10.1111/j.1525-1403.2008.00157.x
MARQUEZ-CHIN, C.; POPOVIC, M. R. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomedical Engineering Online, v. 19, n. 1, p. 34, 24 maio 2020. DOI 10.1186/s12938-020-00773-4
MENG, L. et al. Peripherical electrical stimulation for parkinsonian tremor: a systematic review. Frontiers in Aging Neuroscience, v. 14, p. 795454, 7 fev. 2022. DOI 10.3389/ fnagi.2022.795454
MILLER, L. et al. Functional electrical stimulation for foot drop in multiple sclerosis: a systematic review and meta-analysis of the effect on gait speed. Archives of Physical Medicine and Rehabilitation, v. 98, n. 7, p. 1435-1452, jul. 2017. DOI 10.1016/j.apmr.2016.12.007
MILOSEVIC, M. et al. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomedical Engineering Online, v. 19, n. 1, p. 1-30, 2020. DOI 10.1186/s12938-020-00824-w
NUSSBAUM, E. L. et al. Neuromuscular electrical stimulation for treatment of muscle impairment: critical review and recommendations for clinical practice. Physiotherapy Canada, v. 69, n. 5, 2017. DOI 10.3138/ptc.2015-88
OU, C. et al. Neuromuscular electrical stimulation of upper limbs in patients with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. American Journal of Physical Medicine & Rehabilitation, v. 102, n. 2, p. 151-158, 2023. DOI 10.1097/PHM.0000000000002058
PASCUAL-VALDUNCIEL, A. et al. Non-invasive electrical stimulation of peripheral nerves for the management of tremor. Journal of the Neurological Sciences, v. 435, p. 120195, 15 abr. 2022. DOI 10.1016/j.jns.2022.120195
PATIL, S. et al. Functional electrical stimulation for the upper limb in tetraplegic spinal cord injury: a systematic review. Journal of Medical Engineering & Technology, v. 39, n. 7, p. 419-423, 2015. DOI 10.3109/03091902.2015.1088095
POPA, L.; TAYLOR, P. Functional electrical stimulation may reduce bradykinesia in Parkinson’s disease: a feasibility study. Journal of Rehabilitation and Assistive Technologies Engineering, v. 2, p. 2055668315607836, 26 out. 2015. DOI 10.1177/ 2055668315607836
PROCHAZKA, A.; ELEK, J.; JAVIDAN, M. Attenuation of pathological tremors by functional electrical stimulation. I: Method. Annals of Biomedical Engineering, v. 20, n. 2, 1992. DOI 10.1007/BF02368521
PUSCHMANN, A.; WSZOLEK, Z. K. Diagnosis and treatment of common forms of tremor. Seminars in Neurology, v. 31, n. 1, fev. 2011. DOI 10.1055/s-0031-1271312
RODRÍGUEZ-REYES, G. et al. Botulinum toxin, physical and occupational therapy, and neuromuscular electrical stimulation to treat spastic upper limb of children with cerebral palsy: a pilot study. Artificial Organs, v. 34, n. 3, mar. 2010. DOI 10.1111/j.1525-1594.2009.00768.x
SCALLY, J. B. et al. Evaluating functional electrical stimulation (FES) cycling on cardiovascular, musculoskeletal and functional outcomes in adults with multiple sclerosis and mobility impairment: a systematic review. Multiple Sclerosis and Related Disorders, v. 37, jan. 2020. DOI 10.1016/j.msard.2019.101485
TAYLOR, P. N. et al. The effectiveness of peroneal nerve functional electrical simulation for the reduction of bradykinesia in Parkinson’s disease: a feasibility study for a randomised control trial. Clinical Rehabilitation, v. 35, n. 4, p. 546-557, abr. 2021. DOI 10.1177/0269215520972519
VAFADAR, A. K.; CÔTÉ, J. N.; ARCHAMBAULT, P. S. Effectiveness of functional electrical stimulation in improving clinical outcomes in the upper arm following stroke: a systematic review and meta-analysis. BioMed Research International, v. 2015, n. 729768, 2015. DOI 10.1155/2015/729768
VAN DER SCHEER, J. W. et al. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. Journal Neuro Engi-neering Rehabilitation, v. 18, n. 1, p. 99, jun. 2021. DOI 10.1186/s12984- 021-00882-8
VIANNA, P. C. et al. Core set da Classificação Internacional da Funcionalidade para lesão medular: construção e validação de instrumento. Acta Fisiátrica, v. 26, n. 1, p. 19-24, 31 mar. 2019. DOI 10.11606/issn.2317-0190.v26i1a163012
XU, K. et al. Efficacy of constraint-induced movement therapy and electrical stimulation on hand function of children with hemiplegic cerebral palsy: a controlled clinical trial. Disability and Rehabilitation, v. 34, n. 4, p. 337-346, 2012. DOI 10.3109/ 09638288.2011.607213
XU, K. et al. Muscle recruitment and coordination following constraint-induced movement therapy with electrical stimulation on children with hemiplegic cerebral palsy: a randomized controlled trial. PLoS One, v. 10, n. 10, p. e0138608, 9 out. 2015. DOI 10.1371/journal.pone.0138608
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Cadernos de Pós-Graduação em Distúrbios do Desenvolvimento
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.