MODELAGEM DE ESPECTROS DE LINHAS DE DESEXCITAÇÃO NUCLEAR EM EXPLOSÕES SOLARES UTILIZANDO O PACOTE MONTE CARLO FLUKA

Autores

  • Raphael Malagoli Thereza Centro de Radio Astronomia e Astrofísica Mackenzie - Universidade Presbiteriana Mackenzie
  • S´érgio Szpigel
  • Carlos Guillermo Giménez de Castro
  • Alexander L. MacKinnon
  • Paulo José A. Simões

Palavras-chave:

Explosão Solar, Linhas de Desexcitação Nuclear, FLUKA

Resumo

A modelagem de espectros de emissão de raios-y observados em explosões solares é geralmente realizada via melhor ajuste de dados utilizando-se um conjunto de templates e funções independentes para as componentes espectrais produzidas pelos vários processos relevantes (bremsstrahlung de elétrons e pósitrons, desexcitação nuclear, captura de nêutrons, aniquilação de pósitrons e decaimento de píons). Trabalhos recentes têm demonstrado o potencial do pacote Monte Carlo FLUKA como ferramenta efetiva para a simulação de processos nucleares no contexto de explosões solares, bem como sua capacidade de implementar um tratamento auto-consistente de todas as componentes típicas de espectros de emissão de raios-y observados. Neste trabalho, implementamos uma nova estratégia de simulação com o FLUKA que permite melhorar a estatística e a resolução em energia dos espectros de emissão de raios-y gerados. Utilizando essa estratégia, calculamos espectros de linhas de desexcitação nuclear que apresentam boa concordância com os calculados com o código desenvolvido por Murphy et al. (2009) considerando os mesmos parâmetros de modelo. A partir desses espectros, construímos templates que podem ser incorporados ao programa Objective Spectral Executive (OSPEX) e utilizados na análise de dados de emissão de raios-y de eventos observados com instrumentos tais como o Gamma-ray Burst Monitor (GBM) e o Large Area Telescope (LAT), ambos a bordo do satélite FERMI, e o Reuven Ramaty High Energy Spectroscopic Imager (RHESSI).

Downloads

Não há dados estatísticos.

Referências

AJELLO, M. et al. Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares. Astrophysical Journal, v. 789, n. 1, p. 20, 2014.

ASCHWANDEN, M. J. Physics of the solar corona: an introduction. Chichester, UK: Springer, 2005.

ASPLUND, M. et al. The chemical composition of the Sun. Annual Review of Astronomy and Astrophysics, v. 47, p. 481, 2009.

BATTISTONI, G. et al. Recent developments in the FLUKA nuclear reaction models. In: GADIOLI, E. (ed.). Proceedings of the 11th International Conference on Nuclear Reaction Mechanisms. [S. l.: s. n.], 2006. p. 483.

BATTISTONI, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy, v. 82, p. 10, 2015.

BERGER, M. J. et al. ESTAR, PSTAR and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons and helium ions. 2005. Disponível em: https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions. Acesso em: 14 out. 2021.

BETHE, H. Molière’s theory of multiple scattering. Physical Review, v. 89, p. 1259, 1953.

BETHE, H.; HEITLER, W. On the stopping of fast particles and on the creation of positive electrons. Proceedings of the Royal Society A, v. 146, p. 83, 1934.

CAPELLA, A. et al. Dual parton model. Physics Reports, v. 236, p. 225, 1994.

CERUTTI, F. et al. Low energy nucleus-nucleus reactions: the BME approach and its interface with FLUKA. In: GADIOLI, E. (ed.). Proceedings of the 11th International Conference on Nuclear Reaction Mechanisms. [S. l.: s. n.], 2006.

DERMER, C. D. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation. Astronomy and Astrophysics, v. 157, p. 223, 1986.

FASSO, A. et al. FLUKA: performances and applications in the intermediate energy range. In: Proceedings AEN/NEA Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities. Nuclear Energy Agency (org.) [S. l.: s. n.], 1994. p. 287.

FERRARI, A.; SALA, P. A new model for hadronic interactions at intermediate energies for the FLUKA code. In: DRAGOVITSCH, P.; LINN, S.; BURBANK, M. (ed.). Proceedings MC93 International Conference on Monte Carlo Simulation in High Energy and Nuclear Physics. [S. l.: s. n.], p. 277, 1994.

FERRARI, A.; SALA, P. The physics of high energy reactions. In: GANDINI, A.; REFFO, G. (ed.). Proceedings Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety. [S. l.: s. n.], 1998. p. 424.

FERRARI, A. et al. An improved multiple scattering model for charged particle transport. Nuclear Instrumental and Methods in Physics Research, v. B71, p. 412, 1992.

FERRARI, A.; RANFT, J.; ROESLER, S. et al. Cascade particles, nuclear evaporation, and residual nuclei in high energy hadron-nucleus interactions. Z Phys C - Particles and Fields, v. 70, p. 413-426, 1996. Disponível em: https://doi.org/10.1007/s002880050119

FERRARI, A. et al. FLUKA: a multiple-particle code. Technical Report CERN-2005-10. CERN, 2011.

FREELAND, S. L.; HANDY, B. N. Data analysis with the Solar Soft System. Solar Physics, v. 182, p. 497, 1998.

GETACHEW, A. Stopping power and range of protons of various energies in different materials. 2007. Dissertation (Masters) – Addis Ababa University, Addis Abada, 2007.

HUA, X.-M. et al. Angular and energy-dependent neutron emission from solar flare magnetic loops. Astrophysical Journal Supplement Series, v. 140, n. 2, p. 563, 2002.

KONING, A. J.; HILAIRE, S.; DUIJVESTIJN, M. C. Talys: comprehensive nuclear reaction modeling. AIP Conference Proceedings, v. 769, n. 1, p. 1154, 2005.

KOZLOVSKY, B.; LINGENFELTER, R. E.; RAMATY, R. Positrons from accelerated particle interactions. Astrophysical Journal, v. 316, p. 801, 1987.

KOZLOVSKY, B.; MURPHY, R. J.; RAMATY, R. Nuclear deexcitation gamma-ray lines from accelerated particle interactions. Astrophysical Journal Supplement Series, v. 141, p. 523, 2002.

LANG, K. R. The sun from space. [S. l.]: Springer, 2009.

LIN, R. P. et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Physics, v. 210, n. 1, p. 3, 2002.

LINGENFELTER, R. E.; RAMATY, R. High energy nuclear reactions in solar flares. New York: Benjamin, 1967.

MACKINNON, A.; SZPIGEL, S.; GIMENEZ DE CASTRO, C. G.; TUNEU, J. FLUKA Simulations of Pion decay gamma-radiation from energetic flare ions. Solar Physics, v. 295, n. 12, p. 174, 2020.

MANDZHAVIDZE, N.; RAMATY, R. High-energy gamma-ray emission from pion decay in a solar flare magnetic loop. Astrophysical Journal, v. 389, p. 739, 1992.

MANDZHAVIDZE, N.; RAMATY, R. Particle acceleration in solar flares. Nuclear Physics B – Proceedings Supplements, v. 33, n. 1, p. 141, 1993.

MEEGAN, C. et al. The Fermi Gamma-ray Burst Monitor. Astrophysical Journal, v. 702, n. 1, p. 791, 2009.

MURPHY, R.; DERMER, C. D.; RAMATY, R. High-energy processes in solar flares. Astrophysical Journal Supplement Series, v. 63, p. 721, 1987.

MURPHY, R.; SHARE, G. Compton scattering of deexcitation-line and continuum gamma rays in solar flares. Solar Physics, v. 293, n. 12, p. 163, 2018.

MURPHY, R. J.; KOZLOVSKY, B.; SHARE, G. H. Evidence for enhanced 3He in flare-accelerated particles based on new calculations of the gamma-ray line spectrum, Astrophysical Journal, v. 833, n. 2, p. 196, 2016.

MURPHY, R. J. et al. Accelerated particle composition and energetics and ambient abundances from gamma-ray spectroscopy of the 1991 June 4 solar flare. Astrophysical Journal, v. 490, p. 883, 1997.

MURPHY, R. J. et al. The physics of positron annihilation in the solar atmosphere. Astrophysical Journal Letters, v. 161, n. 2, p. 495, 2005.

MURPHY, R. J. et al. Using gamma-ray and neutron emission to determine solar flare accelerated particle spectra and composition and the conditions within the flare magnetic loop. Astrophysical Journal Supplement Series, v. 168, p. 167, 2007.

MURPHY, R. J. et al. Nuclear gamma-ray de-excitation lines and continuum from accelerated particle interactions in solar flares Astrophysical Journal Supplement Series, v. 183, p. 142, 2009.

PELOWITZ, D. E. MCNP6 user’s manual, version 1.0. Technical Report LA-CP-13-00634. Los Alamos National Laboratory, 2013.

PRIEST, E. R.; FORBES, T. G. Does fast magnetic reconnection exist? Journal of Geophysical Research: Space Physics, v. 97, n. A11, p. 16757, 1992.

RAMATY, R.; KOZLOVSKY; LINGENFELTER, R. E. Nuclear gamma-rays from energetic particle interactions. Astrophysical Journal Supplement Series, v. 40, p. 487, 1979.

RAMATY, R.; MANDZHAVIDZE, N.; KOZLOVSKY, B. Solar atmospheric abundances from gamma ray spectroscopy. In: RAMATY, R.; MANDZHAVIDZE, N.; HUA, X.-M. (ed.). AIP Conference Series. [S. l.: s. n.], 1996. v. 374, p. 172.

ROESLER, S.; ENGEL, R.; RANFT, J. The Monte Carlo event generator DPMJET-III. In: KLING, A. et al. (ed.). Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. p. 1033.

SORGE, H.; STÖCKER, H.; GREINER, W. Poincaré invariant Hamiltonian dynamics: modelling multi-hadronic interactions in a phase space approach. Annals of Physics, v. 192, p. 266, 1989.

STERNHEIMER, R.; BERGER, M.; SELTZER, S. Density effect for the ionization loss of charged particles in various substances. Atomic Data and Nuclear Data Tables, v. 30, p. 261, 1984.

TANABASHI, M. et al. Review of particle physics. Physical Review D, v. 98, n. 446, p. 030001, 2018.

TANDBERG-HANSSEN, E.; EMSLIE, G. The physics of solar flares. New York: Cambridge University Press, 2009.

THEREZA, R. M. Desenvolvimento de templates para modelagem do espectro de linhas de desexcita¬ção nuclear em explosões solares utilizando o pacote FLUKA. 2021. Dissertação (Mestrado em Ciências e Aplicações Geoespaciais) – Universidade Presbiteriana Mackenzie, São Paulo, 2021.

TUNEU, J. Contribuição de pósitrons e elétrons secundários de alta energia para o espectro em rádio de explosões solares. 2016. Dissertação (Mestrado em Ciências e Aplicações Geoespaciais) – Universidade Presbiteriana Mackenzie, São Paulo, 2016.

TUNEU, J.; SZPIGEL, S.; GIMÉNEZ DE CASTRO, C. G.; MACKINNON, A. L. Contribution of energetic ion secondary particles to solar flare radio spectra. In: NANDY, D.; VALIO, A.; PETIT, P. (ed.). Living around active stars: IAU Symposium. 2017. v. 328, p. 120, Cambridge University Press, Cambridge, UK.

TUSNSKI, D. S. Modelagem de processos nucleares de alta energia em explosões solares utilizando o pacote FLUKA. 2028. Tese (Doutorado em Ciências e Aplicações Geoespaciais) – Universidade Presbiteriana Mackenzie, São Paulo, 2018.

TUSNSKI, D. S.; SZPIGEL, S.; GIMÉNEZ DE CASTRO, C. G.; MACKINNON, A. L.; SIMÕES, P. J. A. Self-consistent modeling of gamma-ray spectra from solar flares with the Monte Carlo simulation package FLUKA. Solar Physics, v. 294, n. 8, p. 103, 2019.

VERNAZZA, J. E.; AVRETT, E. H.; LOESER, R. Structure of the solar chromosphere, III – models of the EUV brightness components of the quiet-sun. Astrophysical Journal Supplement Series, v. 45, p. 635, 1981.

VILMER, N.; MACKINNON, A. L.; HURFORD, G. J. Properties of energetic ions in the solar atmosphere fromγ-ray and neutron observations. Space Science Reviews, v. 159, p. 167, 2011.

VILMER, N. et al. High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-ray observations. Astronomy and Astrophysics, v. 412, p. 865, 2003.

ZIEGLER, J.; ANDERSEN, H. The stopping and ranges of ions in matter. New York: Pergamon Press, 1977. 4 v.

Downloads

Publicado

2023-12-21

Como Citar

Malagoli Thereza, R., Szpigel, S., Giménez de Castro, C. G., MacKinnon, A. L., & Simões, P. J. A. (2023). MODELAGEM DE ESPECTROS DE LINHAS DE DESEXCITAÇÃO NUCLEAR EM EXPLOSÕES SOLARES UTILIZANDO O PACOTE MONTE CARLO FLUKA. Revista Mackenzie De Engenharia E Computação, 23(1), 10–37. Recuperado de http://editorarevistas.mackenzie.br/index.php/rmec/article/view/14952

Edição

Seção

Artigos