Simulações de Processos Nucleares em Explosões Solares utilizando o pacote Monte Carlo FLUKA

Autores

  • Tusnski, D. S.
  • Szpigel, S. Universidade Presbiteriana Mackenzie
  • Giménez de Castro, C. G. Universidade Presbiteriana Mackenzie

Palavras-chave:

Explosão Solar; Processos Nucleares; FLUKA

Resumo

A emissão de raios gama em explosões solares é produzida por interações de elétrons e íons acelerados a altas energias com núcleos da atmosfera solar ambiente. A análise dos espectros de emissão de raios gama observados em explosões solares fornece diagnósticos importantes tanto dos mecanismos de aceleração das partículas quanto da estrutura e da evolução do plasma ambiente. Neste trabalho, apresentamos e discutimos os resultados de simulações de processos nucleares de alta energia em explosões solares utilizando o pacote Monte Carlo FLUKA. Considerando modelos simples para a atmosfera solar ambiente e feixes de prótons primários acelerados com diferentes distribuições energéticas e angulares, obtivemos espectros de emissão de raios gama semelhantes aos observados em explosões solares.

Downloads

Não há dados estatísticos.

Referências

ANDERSEN, V. et al. The FLUKA code for space applications: recent developments. Advances in Space Research v. 34 (6), p. 1302, 2004.
ASHWANDEN, M. J. Physics of the solar corona: an introduction. [S.l.]: Praxis Publishing Ltd, 2005.
ASPLUND, M. et al. The chemical composition of the Sun. Annual Review of Astronomy and Astrophysics, v. 47, p. 481–522, 2009.
BASTIAN, T.; BENZ, A.; GARY, D. Radio emission from solar flares. Annual Review of Astronomy and Astrophysics, v. 36, n. 1, p. 131–188, 1998.
BATTISTONI, G. et al. Recent developments in the FLUKA nuclear reaction models. In: Proc. 11th Int. Conf. on Nuclear Reaction Mechanisms. Gadioli, E. (Ed.), p. 483, 2006.
BATTISTONI, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy, v. 82, p. 10 – 18, 2015.
BERGER, M. J. et al. ESTAR, PSTAR and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons and helium ions, 2005. Disponível em: http://www.nist.gov/pml/data/star/.
BETHE, H. A.; HEITLER, W. On the stopping of fast particles and on the creation of positive electrons. Proc. Roy. Soc. A 146, p. 83, 1934.
BETHE, H. A. Moliére's theory of multiple scattering. Phys. Rev. 89, p. 1259, 1953.
CAPELLA, A. et al. Dual parton model. Phys. Rep., v. 236, p. 225, 1994.
CERUTTI, F.; BATTISTONI, G.; CAPEZZALI, G.; COLLEONI, P.; FERRARI, A.; GADIOLI, E.; MAIRANI, A.; PEPE, A. Low energy nucleus-nucleus reactions: the BME approach and its interface with FLUKA. In: Proc. 11th International Conference on Nuclear Reaction Mechanisms, Varenna (Italy) June 12-16, 2006.
DULK, G. A.; MARSH, K. A. Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. The Astrophysical Journal, v. 259, p. 350–358, 1982.
FASSÒ, A. et al. FLUKA: performances and applications in the intermediate energy range. In: Proc. AEN/NEA Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities, OECD Documents, p. 287, 1994.
FERRARI, A.; SALA, P. R.; GUARALDI, R.; PADOANI, F. An improved multiple scattering model for charged particle transport. Nucl. Instr. Meth. B71, p. 412, 1992.
FERRARI, A.; SALA, P. A new model for hadronic interactions at intermediate energies for the FLUKA code. In: Proc. MC93 Int. Conf. on Monte Carlo Simulation in High Energy and Nuclear Physics. Dragovitsch, P.; Linn, S.; Burbank, M. (Eds.)., p. 277, 1994.
FERRARI, A.; SALA, P. R. The physics of high energy reactions. In: Proc. Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety. Gandini, A.; Reffo, G. (Eds.), p. 424, 1998.
FERRARI, A.; SALA, P. R.; FASSÒ, A.; RANFT, J. FLUKA: a multiple-particle code. Technical Report CERN-2005-10, 2011.
GETACHEW, A. Stopping power and range of protons of various Energies in different materials. Dissertação (Mestrado) — ADDIS ABABA UNIVERSITY, 2007.
HUA, X.-M.; KOZLOVSKY, B.; LINGENFELTER, R. E.; RAMATY, R.; STUPP, A. Angular and energy-dependent neutron emission from solar flare magnetic loops. The Astrophysical Journal Supplement Series 140 (2), p. 563, 2001.
KOZLOVSKY, B.; LINGENFELTER, R. E.; RAMATY, R. Positrons from accelerated
particle interactions. Astrophysical Journal, v. 316, p. 801–818, 1987.
KOTOKU, J. et al. Effects of Compton scattering on the gamma ray spectra of solar flares. Astronomical Society of Japan, v. 59, p. 1161, 2007.
LINGENFELTER, R. E.; RAMATY, R. High-energy nuclear reactions in astrophysics. B. S. P Shen (Benjamin: New York), 1967.
MACKINNON, A.; SZPIGEL, S.; DE CASTRO, C. G. G.; TUNEU, J. FLUKA simulations of pion decay gamma-radiation from energetic flare ions, Solar Phys., v. 295, p. 174, 2020.
MORRISON, P. On gamma-ray astronomy. In: Proc. Fifth International Congress on Cosmic Radiation, Vallarta, M. S. (Ed.), p. 305, 1958.
MURPHY, R.; DERMER, C. D.; RAMATY, R. High-energy processes in solar flares. Astrophys. J. Supp., v. 63, p. 721–748, 1987.
MURPHY, R. J. et al. The physics of positron annihilation in the solar atmosphere. The
Astrophysical J. Supp., v. 161, p. 495, 2005.
MURPHY, R. J. et al. Using gamma-ray and neutron emission to determine solar flare accelerated particle spectra and composition and the conditions within the flare magnetic loop. Astrophys. J. Supp., v. 168, p. 167–194, 2007.
OLIVE, K. A.; Particle Data Group. Review of particle physics. Chinese Physics C38 (9), 090001, 2014. Disponível em: http://stacks.iop.org/1674-1137/38/i=9/a=090001.
RAMATY, R.; KOZLOVSKY; LINGENFELTER, R. E. Nuclear gamma-rays from energetic particle interactions. The Astrophysical J. Supp., v. 40, p. 487, 1979.
RAMATY, R. Astrophysical gamma ray lines from accelerated particle interactions. In: Gamma Ray Sky with Compton GRO and SIGMA. Signore, M.; Salati, P.; Vedrenne, G. (Eds.)., 1995. p. 279–301.
RAMATY, R.; MURPHY, R. J. Nuclear processes and accelerated particles in solar flares. Space Sci. Rev, v. 45, p. 213–268, 1987.
ROESLER, S.; ENGEL, R.; RANFT, J. The monte carlo event generator DPMJET-III. In: Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications. Kling, A. et al. (Eds.), p. 1033, 2001.
SORGE, H.; STÖCKER, H.; GREINER, W. Poincaré invariant hamiltonian dynamics: modelling multi-hadronic interactions in a phase space approach. Annals of Physics 192, p. 266, 1989.
TANDBERG-HANSSEN, E.; EMSLIE, G. The physics of solar flares. [S.l.]: Cambridge
University Press, 2009.
VILMER, N.; MACKINNON, A. L.; HURFORD, G. J. Properties of energetic ions in the solar atmosphere from gamma-ray and neutron observations. Space Science Reviews, v. 159, p. 167–224, 2011.

Downloads

Publicado

2021-11-15

Como Citar

Tusnski, D. S., Szpigel, S., & Giménez de Castro, C. G. (2021). Simulações de Processos Nucleares em Explosões Solares utilizando o pacote Monte Carlo FLUKA. Revista Mackenzie De Engenharia E Computação, 20(1), 10–32. Recuperado de http://editorarevistas.mackenzie.br/index.php/rmec/article/view/14220

Edição

Seção

Artigos