Nicola Linty, Emilia Correia, Ingrid Hunstad, Amauri S. Kudaka


The use of Global Navigation Satellite Systems (GNSSs) is nowadays very popular, and the positioning service that they provide is becoming the basis of several applications. Due to their wide coverage, GNSS signals can be used at no cost as probing signals to retrieve parameters to characterize the atmosphere, such as ionospheric scintillation indexes. GNSS receivers coupled to the specific algorithm are indeed a valid alternative to large and expensive ad hoc equipment such as ionosondes. In particular, Software Defined Radio (SDR) receivers are characterized by a higher level of flexibility and configurability when compared to commercial receivers, which fits for the purposes of ionospheric monitoring and enable the study of advanced and innovative algorithms, both for scientific purposes (ionospheric monitoring, space weather), and for technological development (robust GNSS receivers design). A GNSS-based ionosphere monitoring station, including an SDR-based receiver and a professional receiver, was installed in the CRAAM laboratory at Mackenzie Presbyterian University (São Paulo, Brazil) on May 2017. Details of the installation and the new approaches for the storage, processing, and transfer of GNSS data, including raw Intermediate Frequency (IF) samples, are described, along with preliminary results related to ionospheric events captured during the first months of its operation.


GNSS; satellite navigation; ionosphere

Texto completo:

PDF (English)


ABDU, M. A.; ANANTHAKRISHNAN, S.; COUTINHO, E. F.; KRISHNAN, B. A.; REIS, E. M. S. Azimuthal drift and precipitation of electrons into the South Atlantic Geomagnetic Anomaly during an SC Magnetic storm. J. Geophys. Res., v.78, p.5830–5836, doi:10.1029/JA078i025p05830, 1973.

ABDU, M. A.; BATISTA, I. S.; CARRASCO, A. J.; BRUM, C. G. M. South Atlantic Magnetic Anomaly ionization: A review and a new focus on electrodynamics effects in the equatorial ionosphere. J. Atmos. Sol. Terr. Phys., v.67, p.1643–1657, 2005.

AKALA, A. O.; DOHERTY, P. H.; VALLADARES, C. E.; CARRANO, C. S.; SHEEHAN, R. Statistics of GPS scintillations over South America at three levels of solar activity. Radio Sci., v.46, RS5018,, 2011.

ALFONSI, L.; CILLIERS, P. J.; ROMANO, V.; HUNSTAD, I.; CORREIA, E.; LINTY, N.; DOVIS, F.; TERZO, O.; RUIU, P.; WARD, J.; RILEY, P. First observations of GNSS ionospheric scintillations from DemoGRAPE project. Space Weather, Wiley Online Library, v. 14 (10), p.704–709, 2016.

CESARONI, C.; ALFONSI, L.; VEETTIL, S. V.; PARK, J.; ROMERO, R.; LINTY, N.; DOVIS, F.; BARROCA, D.; ORTEGA, M. C.; PEREZ, R. O. Monitoring ionosphere over South America: The MImOSA and MImOSA2 projects. In Navigation World Congress (lAIN), 2015 International Association of Institutes of Oct 2015 in Prague, p.1-7, doi: 10.1109/IAIN.2015.7352226, 2015.

CURRAN, J. T.; BAVARO, M.; FORTUNY, J. An open-loop vector receiver architecture for GNSS-based scintillation monitoring. In: European Navigation Conference (ENC-GNSS), Rotterdam, 2014.

DE PAULA, E. R.; KHERANI, E. A.; ABDU, M. A.; BATISTA, I. S.; SOBRAL, J. H. A.; KANTOR, I. J.; TAKAHASHI, H.; REZENDE, L. F. C.; MUELLA, M. T. A. H.; RODRIGUES, F. S.; KINTNER, P. M.; LEDVINA, B. M.; MITCHELL, C.; GROVES, K. M. Characteristics of the ionospheric irregularities over Brazilian longitudinal sector. Indian J. of Radio Space, 36, p.268–277, 2007.

DIERENDONCK, A. V.; HUA, Q. Measuring ionospheric scintillation effects from GPS signals. In: Proceedings of the 57th Annual Meeting of the Institute of Navigation, p.391–396, 2001.

ION GNSS SDR Metadata Working Group, Open Source code repository for GNSS SDR Metadata XML interchange standard.2017.

KAPLAN, E.; HEGARTY, C. Understanding GPS: principles and applications. Artech house, 2005.

LINTY, N.; ROMERO, R. ; CRISTODARO, C. ; DOVIS, F. ; BAVARO, M. ; CURRAN, J. T. ; FORTUNY-GUASCH, J. ; WARD, J. ; LAMPRECHT, G. ; RILEY, P. ; CILLIERS, P. ; CORREIA, E. ; ALFONSI, L. Ionospheric scintillation threats to GNSS in polar regions: the DemoGRAPE case study in Antarctica. In: 2016 European Navigation Conference (ENC), IEEE, p.1–7, 2016a.

LINTY, N. et al. Benefits of GNSS software receivers for ionospheric monitoring at high latitudes. In: IEEE. Radio Science Conference (URSI AT-RASC), 2015 1st URSI Atlantic, p.1–6, 2015.

LINTY, N. ; DOVIS, F. ; ROMERO, R. ; CRISTODARO, C. ; ALFONSI, L. ; CORREIA, E. Monitoring Ionosphere Over Antarctica by Means of a GNSS Signal Acquisition System and a Software Radio Receiver. Proceedings of the 2016 International Technical Meeting of The Institute of Navigation, Monterey, California, January 2016, p.549-555, 2016b.

MORO, J. ; DENARDINI, C. M. ; ABDU, M. A. ; CORREIA, E. ; SCHUCH, N. J. ; MAKITA, K. Latitudinal dependence of cosmic noise absorption in the ionosphere over the SAMA region during the September 2008 magnetic storm. Journal of Geophysical Research, v. 117, A06331, p.1-7, 2012.

MORO, J. ; DENARDINI, C. M. ; ABDU, M. A. ; CORREIA, E. ; SCHUCH, N. J. ; MAKITA, K. Correlation between the cosmic noise absorption calculated from the SARINET data and the energetic particles measured by MEPED: Simultaneous observations over SAMA region. Advances in Space Research, v. 51, p. 1692-1700, 2013.

MUELLA, M. T. A. H.; DE PAULA, E. R.; MONTEIRO, A. A. Ionospheric scintillation and dynamics of Fresnel-scale irregularities in the inner region of the equatorial ionization anomaly. Surv. Geophys., v.34, p.233–251,, 2013.

PENG, S.; MORTON, Y. A USRP2-based reconfigurable multi-constellation multi-frequency GNSS software receiver front end. GPS Solutions. Springer, v. 17 (1), p. 89–102, 2013.

POVERO, G.; ALFONSI, L.; SPOGLI, L.; DI MAURO, D.; CESARONI, C.; DOVIS, F., ROMERO, R.; ABADI, P.; LE HUY, M.; LA THE, V.; AND FLOURY, N. Ionosphere Monitoring in South East Asia in the ERICA Study. J Inst Navig, v.64, p.273–287, doi: 10.1002/navi.194, 2017.

LO PRESTI, L. et al. Software defined radio technology for GNSS receivers. In: IEEE. Metrology for Aerospace (MetroAeroSpace), p. 314–319, 2014.

ROMANO, V.; MACELLONI, G.; SPOGLI, L.; BROGIONI, M.; MARINARO, G.; MITCHELL C. N. Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers. Annals of Geophysics, v.56 (2), R0219, doi:10.4401/ag-6241, 2013.

ROMERO, R.; NICOLA, L.; CALOGERO, C.; FABIO, D.; LUCILLA, A. On the Use and Performance of New Galileo Signals for Ionospheric Scintillation Monitoring over Antarctica. Proceedings of the 2017 International Technical Meeting of The Institute of Navigation, Monterey, California, January 2017, p. 989-997, 2017.

SHANMUGAM, S. et al. Evolution to modernized GNSS ionoshperic scintillation and TEC monitoring. In: IEEE. Position Location and Navigation Symposium (PLANS) - ION, p. 265–273, 2012.

SREEJA, V.; AQUINO, M.; ELMAS, Z. G. Impact of ionospheric scintillation on GNSS receiver tracking performance over Latin America: Introducing the concept of tracking jitter variance maps. Space Weather, v. 9 (10), p. 1–6, 2011.