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Abstract
Clustering is an important data mining task from the field of knowledge disco-

very in databases. Many algorithms can perform clustering in a simple and efficient 
manner, but have drawbacks, such as the lack of a way to automatically determine 
the optimal number of clusters in the dataset and the possibility of getting stuck in 
local optima solutions. To try and reduce these drawbacks this work proposes a new 
clustering algorithm based on artificial immune systems. This algorithm is characte-
rized by the generation of multiple simultaneous high quality solutions in terms of 
the number of clusters in the database and the use of a cost function that explicitly 
evaluates the quality of clusters, minimizing the inconvenience of getting stuck in 
local optima solutions.
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1 Introduction

Natural computing has as one of its goals to develop solutions to real world problems 
by observing the natural principles and the behavior of species, including techniques 
that use only theories related to biology, for example, the theory of evolution. Resear-
chers have used this theory to formulate the first evolutionary algorithms used in com-
putational tasks, such as data clustering, pattern recognition and function optimiza-
tion (YU; GEN, 2010). This work focuses on the development and application of one 
bio-inspired technique within the artificial immune systems field for the problem of 
grouping data.

Taken as an important task of knowledge discovery in databases, data clustering 
can be used to identify relationships of practical relevance between the data (JAIN; 
MURTY; FLYNN, 1999), such as the identification of customer profiles, anomaly 
detection and market segmentation, among others. A difficulty of many clustering 
techniques is the fact that they may need to be provided, a priori, a number k of pos-
sible clusters in the data base. The variation of several techniques, including evolutio-
nary algorithms, has been introduced to approach a better solution for the automatic 
discovery of a suitable number of groups in a dataset (HRUSCHKA et al., 2009; 
SHEIKH; RAGHUWANSHI; JAISWAL, 2008; YANG, 1993; XU; WUNSCH, 
2005).

It is therefore of great importance to develop new techniques to provide solutions 
that improve the efficiency of clustering techniques, especially regarding the automa-
tic determination of the number of clusters. This paper aims to propose a new artifi-
cial immune algorithm for data clustering, which has the following main features:

•	 The automatic determination of the number k of clusters in a database;

•	 The use of an explicit cost function in the search process; and

•	 The maintenance of diversity through an explicit mechanism for identifying 
and pruning similar solutions.

This paper is organized as follows. Section 2 introduces the two algorithms that, 
when combined, generate the present proposal. In section 3 the new algorithm is 
proposed for the task of clustering. Section 4 shows the experiments and their results 
compared with other algorithms in the literature. And in Section 5 has the conclusion 
of the results and perspectives for future work.
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2 THE PRECURSORS: OPT-AINET AND EAC

The algorithm to be proposed in this paper, named ocopt-aiNet, was designed by 
combining two other algorithms from the literature, an immune network named 
opt-aiNet and originally designed to solve multimodal optimization problems, and an 
evolutionary algorithm for clustering, named EAC. This section is devoted to the re-
view of these two methods so that the reader can properly understand ocopt-aiNet.

2.1 Opt-aiNet: an immune network algorihtm for optmization

Many inspirations for the development of computational models and methods for 
solving complex problems can be found in biology. Artificial immune systems (AIS) 
take inspiration from the vertebrate immune system to develop computational tools 
for solving problems (HRUSCHKA et al., 2009; DASGUPTA; JI; GONZALEZ, 
2003; CASTRO; TIMMIS, 2002).

A model based on immune networks, specifically discrete networks (CASTRO; TIM-
MIS, 2003), is the aiNet algorithm (CASTRO; VON ZUBEN, 2001). This algorithm 
was successfully applied to several problems in data compression and clustering. An 
optimization version of the aiNet algorithm, called opt-aiNet (CASTRO; TIMMIS, 
2002), was developed with the ability to perform unimodal and multimodal searches 
(SHEIKH; RAGHUWANSHI; JAISWAL, 2008; CASTRO; TIMMIS, 2002).

In opt-aiNet each network cell represents a solution to the problem being treated. 
The algorithm is used to find solutions to continuous optimization problems, in 
which each cell is a real valued vector in an Euclidean space. The opt-aiNet algorithm 
uses an evaluation function to be optimized, which also provides the fitness value of 
that cell. The fitness measures the quality of the solution represented by a cell: high 
fitness values indicate good solutions, whilst low fitness values indicate lower quality 
solutions. 

There are also the clone generation and mutation processes: at each generation 
there is only cell proliferation of a number of clones defined by the user, and in the 
mutation there is the variation of these clones, based on a specific criterion. In opt-aiNet 
the mutation rate is proportional to the fitness: cells with high fitness values suffer low 
mutation rates, whilst cells with low fitness suffer high mutation rates.

In addition to the fitness of a cell, which measures its quality in relation to a cost 
function to be optimized, a cell also has an affinity, representing how similar it is to 
other cells in the network. The affinity of a cell may lead to a cell cloning or pruning. 
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The affinity of cells is evaluated based on the Euclidean distance among them. Cells 
with an affinity greater than a pre-defined threshold may be pruned. After this sup-
pression process new randomly generated cells are included in the network (SHEIKH; 
RAGHUWANSHI; JAISWAL, 2008; CASTRO; TIMMIS, 2002).

2.2 EAC: an evolutionary algorithm for clustering 

The evolutionary algorithms have their inspirationin the Darwinian Theory of 
Evolution. These algorithms are able to find good solutions to complex problems in 
reasonable computational time. The evolutionary algorithm for clustering (EAC) was 
proposed to achieve optimal groupings of data (HRUSCHKA; CAMPELLO; CAS-
TRO, 2006).

The EAC is started by a population of individuals, randomly generated, which re-
present candidate solutions to the data clustering problem. This initial generation is 
then used to produce offspring through preselected random variations. The resulting 
candidate solutions will be evaluated based on their effectiveness in solving the problem.

As the same way that the environment makes a selective pressure on individuals, 
in the evolutionary algorithm there is also a process where only the most adapted in-
dividuals (best fitness) are preserved to the next generation, and this process is repeated 
several times (FOGEL, 2000).

The stopping criterion in the EAC is the maximum number of iterations (num_it) 
that is parameterized; this criterion is usually present in evolutionary algorithms. The 
EAC also has a step for a local search execution that is made by the k-means algorithm 
(JAIN; MURTY; FLYNN, 1999; XU; WUNSCH, 2005). The local search aims to 
approximate the candidate solutions of clustering with good quality before the evalua-
tion of each individual of the population. This way there is an improvement on the 
search for the best clustering.

Details about the encoding scheme and fitness function for EAC will be provided 
in the next section, when the ocopt-aiNet algorithm is proposed.

3 Ocopt-ainet: the proposal of an 
optimal clustering immune algorithm

The immune algorithm proposed in this work, entitled ocopt-aiNet (optimal clus-
tering opt-aiNet), is based on the two algorithms described above: 1. opt-aiNet (CAS-
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TRO; TIMMIS, 2002), and 2. EAC (HRUSCHKA; CAMPELLO; CASTRO, 
2006). The opt-aiNet was used to define the dynamic adaptation of ocopt-aiNet, whilst 
the EAC was used to define the representation of individuals in the population and the 
genetic variation operators (HRUSCHKA; CAMPELLO; CASTRO, 2006).

Two versions of ocopt-aiNet are proposed in this paper. The first version (v
1
), ins-

pired by the EAC, has a local search performed using the k-means algorithm, and a 
second version (v

2
) identical to v

1
, but without the local search performed by k-means. 

The ocopt-aiNet was developed with the objective of overcoming some of the 
drawbacks found in classical clustering algorithms, namely, the proposition of a single 
clustering solution at each execution, the need to automatically determine a suitable 
number of groups in the database, and a local search around a specific region of the 
space. Thus, the ocopt-aiNet algorithm has the following main features:

•	 Automatic determination of the number k of clusters in the database;

•	 Broad exploitation of the search space; and

•	 Generation of multiple simultaneous clusters, allowing a more exploratory 
and multimodal analysis of the database.

The terminology used in describing the ocopt-aiNet algorithm is the same as the 
one used to describe opt-aiNet:

•	 Cell: represents an individual in the population encoding a candidate solution 
for clustering.

•	 Clones: new generations of cells copied from the existing cells and subject to 
mutation.

•	 Affinity: degree of similarity between the cells, evaluated through an analysis of 
their coding for the cluster.

•	 Suppression: deletion of cells in the population.

•	 Fitness: value of each cell in relation to an objective function.

3.1 Encoding

The encoding scheme used in ocopt-aiNet is the same as the one used by EAC. 
Considering a database containing N objects, each cell represents a candidate solution 
to the clustering problem and is structured as a vector of length N in which each po-
sition represents the cluster to which each object belongs. If the solution has k clusters 
so the possibility of labels for an object is {1,...,k}.

The cell in Figure 1 illustrates the encoding scheme for a database containing 
fifteen objects and three clusters. In this case six objects {1,2,3,4,9,10} form cluster 1, 
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cluster 2 consists of four objects {5,6,7,8}, and cluster 3 consists of five objects 
{11,12,13,14,15}.

Cell – [ 1 1 1 1 2 2 2 2 1 1 3 3 3 3 3 ]

Figure 1 Example of the encoding scheme for ocopt-aiNet.

Source: Elaborate by the authors.

Like opt-aiNet, the ocopt-aiNet has an initial population of randomly generated 
cells, but ocopt-aiNet assumes a maximum number of clusters to the positions of the 
vector representing each cell, a process also present in EAC. Assuming k initial clus-
ters, a value ranging from 1 to k, k > 1, will be initially set randomly to each cell. The 
initial number of cells may also be set by the user or chosen randomly.

3.2 Cluster refinement

After generating the initial population, the k-means algorithm is used for the re-
finement (local search) of the clusters encoded by the cells (NALDI, 2008). The k-
means algorithm performs a partitional clustering, in the sense that a database con-
taining N objects is partitioned into k clusters, and positions each prototype 
approximately in the center of mass of each cluster. The k-means algorithm is sum-
marized in Box 1.

Two parameters can be used as stopping criterion for the algorithm: a maximum 
number of iterations, or the maximum absolute difference between the centroid va-
lues in two consecutive iterations (HRUSCHKA; CAMPELLO; CASTRO, 2006). 
For ocopt-aiNet, only the maximum number of iterations (max_it) is being used as 
stopping criterion.

BOX 1

K-means algorithm used in ocopt-aiNet

Pseudocode

1.	 Assume k clusters encoded in each cell;
2.	 While the number of iterations N < max_it do

2.1	Calculate the centroid of the k clusters;
2.2	Encode each object with the closest centroid.

3.	 EndWhile.

Source: Elaborate by the authors.
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3.3 Mutation

The ocopt-aiNet uses three different types of mutation operators: exclusion, divi-
sion and transformation. The first two operators were inspired by the implementation 
of the evolutionary operators found in the EAC, and the last one was designed speci-
fically for ocopt-aiNet.

For each clone i the mutation probability is inversely proportional to the cell 
fitness:

	 P(i) = 1 – f	 (1)

where f is the normalized fitness value of the parent cell, and P(i) is the mutation 
probability to be applied to cell i, i = 1,…, M; M being the population size in the 
current iteration. Thus, the clones with parent cell that have higher fitness are less 
likely to be mutated.

Only one mutation operator can be applied to each clone at each iteration. The-
refore, in case a clone mutates, the exclusion and division operators have probability 
Pm

ed
 = 25% to be applied, while the transformation operator has probability Pm

t
 = 50%. 

This means that the probability of creating a new cluster or removing an existing one 
is half the probability of maintaining the same number of clusters and varying their 
structure.

The first operator (exclusion) is applied only in cells that have more than two clus-
ters in their encoding, thus promoting elimination, through a random selection, of 
one cluster of the candidate solution. Figure 2 illustrates such case. Assuming that 
cluster 2 is randomly chosen to be excluded from this cell; the objects in positions 8 
and 9 will have to be moved to another cluster. The new cluster(s) to which these 
objects will belong to is (are) chosen based on the proximity of each of these objects 
to the centroid for each remaining cluster represented by that cell.

Cell 1 – [ 1 1 3 4 1 3 4 22 1 3 4 4 3 3 ]

Figure 2 Cell representing a possible solution.

Source: Elaborate by the authors.

Figure 3 illustrates a hypothetical case of objects, with two attributes, encoded by 
a cell illustrated in Figure 2 and indicates the new clusters of objects 8 and 9. In Box 2 
it is presented the pseudocode for the exclusion operator.
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Figure 3 Exclusion operator. Clustering encoded by Cell 1, in which objects 8 and 9 originally 
belonging to cluster 2 are reallocated to the remaining closest clusters.

Source: Elaborate by the authors.

BOX 2

Exclusion operator

Pseudocode

1.	 Check if a cell has more than two clusters.
2.	 Randomly choose one cluster in the cell to be excluded.
3.	 Remove from the cell the label of the cluster chosen in Step 2.
4.	 Reallocate the objects labeled with the removed cluster to their closest clusters based on their distance to the 

centroids of the remaining clusters.

Source: Elaborate by the authors.

The second operator (division) can be applied to any cluster of a cell that has more 
than two objects. This operator divides a randomly chosen cluster into two new clus-
ters, such that objects closest to the centroid of the original cluster lead to a new cluster 
and the objects closer to the most distant object from the centroid lead to another new 
cluster. As an example consider the cell illustrated in Figure 4.

Cell 2 – [113413413134433]

Figure 4 Cell used for operator of division.

Source: Elaborate by the authors.

Cluster 4 was randomly chosen for applying the division operator. In Cell 2, sho-
wn in Figure 4, cluster 4 will be divided into two clusters, one formed by objects 4, 
12 and 13 (cluster 5) and another formed only by object 7 (cluster 6). These clusters 
with their new formations are illustrated in Figure 5. Box 3 presents the pseudocode 
for the division operator.
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Figure 5 Division operator. Clustering encoded by Cell 2 through which the cluster 4 form two 
new clusters.

Source: Elaborate by the authors.

BOX 3

Division operator

Pseudocode

1.	 Randomly choose a cell cluster.
2.	 Check if the cluster has more than two objects.
3.	 Calculate the centroid of the selected cluster.
4.	 Calculate the similarity between each object and the centroid, and store the most distant object.
5.	 Reallocate the objects based on their distance to the centroid and most distant object: those objects closer to the 

centroid remain in one cluster, whilst those closer to the farer object are moved to the new cluster.

Source: Elaborate by the authors.

The third operator (transformation) can be applied to all positions of a cell and 
each position has a probability P = 10% to changing. This operator checks if the ob-
ject corresponding to the position is on the right cluster. For this, it is verified the si-
milarity of the object to all the centroids in the network. If there is a centroid of 
another cluster with which this object has a greater similarity than the centroid of the 
cluster to which it is allocated, then its label is changed to the centroid of greater 
similarity.

3.4 Objective function

As well as in the EAC algorithm, the objective function to evaluate each cell is 
based on the Silhouette criterion, which is considered a robust strategy for the predic-
tion of optimal clusters of data (BOLSHAKOVA; AZUAJE, 2002).
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To explain this concept, let us consider an object i belonging to a cluster A. So, the 
average dissimilarity of i to all other objects of A is denoted by a(i). Now let us take 
into account cluster B. The average dissimilarity of i to all objects of B will be called 
d(i,B). After computing d(i,B) for all clusters B ≠ A, the smallest one is selected, i.e., 
b(i) = min d(i,B), B ≠ A. This value represents the dissimilarity of i to its nearest 
neighboring cluster, and the Silhouette, s(i), is given by:

	 s(i) =     b(i) – a(i)
max{a(i), b(i)} 	 (2)

The value s(i) ∈ [-1, +1], the higher s(i) the better the assignment of object i to a 
given cluster. If s(i) is zero, then it is not clear whether the object should have been 
assigned to its current cluster or to a neighboring one. If cluster A has only one object, 
then s(i) is not defined and is considered zero. The objective function value is the 
average of s(i), i = 1,..., N, and the best clustering is achieved when this function is 
maximized (YU; GEN, 2010; HRUSCHKA; CAMPELLO; CASTRO, 2006; BOL-
SHAKOVA; AZUAJE, 2002; KAUFMAN; ROUSSEEUW, 1990).

In the immune algorithm presented in this paper the Silhouette was changed based 
on the same criterion used by the EAC algorithm (HRUSCHKA; CAMPELLO; 
CASTRO, 2006): the dissimilarity of the object with a group is based on its distance 
to the cluster centroid, instead of its distance to all objects of the group.

Thus, the term a(i) in Eq. (2) is changed to be the dissimilarity of object i to the 
centroid of group A. Similarly, the calculation of the term d(i,B), which deals with 
the dissimilarity of object i to objects in group B, B ≠ A, is changed to be the dissimi-
larity of object i to the centroid of cluster B, B ≠ A. This modification allows a signi-
ficant reduction of computational time, whilst maintaining the consistency with the 
objective function, the mutation operators (exclusion and division) and the local search 
(k-means), for they are now all based on centroids (HRUSCHKA; CAMPELLO; 
CASTRO, 2006). To calculate the dissimilarity between objects, the Euclidean distance 
was used.

3.5 Affinity and suppression

In ocopt-aiNet the affinity between the network cells has as main objective to sup-
press cells that have similar encodings, that is, to avoid redundancy.

In opt-aiNet the affinity among cells is determined by their Euclidean distance. 
However, in ocopt-aiNet the affinity among cells is calculated based on the number of 
objects labeled to the same cluster in the cells, even if different labels are used to en-
code the same clusters. It is important not to use the fitness as a synonym to affinity, 
because the fitness values of two cells may be identical or very similar, even when their 
encoding is very different. The affinity calculation is given by:
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	 Af (a,b) =   Ni
N 	 (3)

where Af (a,b) is the affinity value between cells a and b, N
i
 represents the total num-

ber of objects labeled in the same cluster in cells a and b, and N represents the total 
number of objects (length) in a cell.

Consider the network shown in Figure 6, which has four cells and represents a 
base with fifteen objects. 

Cell 1 – [112233333334444]
Cell 2 – [221133333334444]
Cell 3 – [121233333334444]
Cell 4 – [121133333334444]

Figure 6 Network cells after the first iteration of the algorithm.

Source: Elaborate by the authors.

It can be noted that cells 1 and 2, despite having different labels for some clusters, 
represent the same clustering solution. Then, Af (1,2) = 1, meaning they are comple-
tely similar; whilst Af (3,4) = 14/15 = 0.93, for there is one distinct label between the 
two candidate solutions. The analysis of these cells is illustrated in Figure 7.

Cell 3

Cluster I Objects: 1, 3

Cluster II Objects: 2, 4

Cluster III Objects: 5, 6, 7, 8,9, 10, 11

Cluster IV Objects: 12, 13, 14, 15

Cell 4

Cluster I Objects: 1, 3, 4

Cluster II Objects: 2

Cluster III Objects: 5, 6, 7, 8, 9, 10, 11

Cluster IV Objects: 12, 13, 14, 15

Figure 7 Clusters generated by cells 3 and 4.

Source: Elaborate by the authors.

The suppression threshold is inversely proportional to affinity:

	 a = 1 – Af	 (4)

As the affinity among cells is within the [0,1] interval, the closer α is to one, the 
more similar cells have to be in order for a suppression to occur.
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3.6 Pseudocode

The ocopt-aiNet algorithm has the steps outlined in Box 4. It has two stopping 
criteria: 

•	 The first criterion (Step 2.8), called the local criterion (d), uses the stability of 
the fitness of cells in the population to determine if the difference between cells 
in the current iteration and the cells of the previous iteration is below a user 
defined threshold; the algorithm proceeds to the next step if the difference is 
less than that threshold. 

•	 The second criterion (Step 2), called global criterion (D), aims to determine the 
stability of the clusters generated during a number of iterations, called a win-
dow of stability (w). According to this criterion, if the difference in the avera-
ge number of clusters did not reach the threshold, the algorithm terminates 
execution, indicating that the number of clusters of cells remained stable du-
ring the window of stability.

BOX 4

ocopt-aiNet algorithm

Pseudocode

1.	 Initialize the population with N random cells.
2.	 While average number of clusters w has difference lower than D do

2.1	 Apply refinement clustering cells of the network (implemented using the k-means algorithm).
2.2	 Evaluate each cell according to their fitness.
2.3	 Apply linear normalization to the fitness.
2.4	 Generate a number Nc of clones for each parent cell.
2.5	 Apply mutation proportional to the fitness of the parent cell, keeping the parent cell.
2.6	 Determine the fitness of all cells of the population.
2.7	 For each clone, select the largest fitness and calculate the average fitness of the population selected.
2.8	 If the difference between the average fitness of the population at the current iteration compared to the aver-

age fitness of the previous iteration is less than d, continue. Else, return to Step 2.
2.9	 Determine the affinity of all cells in the population. Delete cells with affinities higher than the suppression 

threshold (s).
2.10	Introduce a percentage d% of randomly generated cells.

3.	 End While.

Source: Elaborate by the authors.

The behavior of the algorithm can be summarized as follows. Steps 2.1 to 2.8 
(local convergence): at each iteration the network cells may undergo mutation until 
they stabilize; Steps 2.9 to 2.10 (network suppression): after the fitness stabilization of 
the algorithm, the affinity among cells is calculated and the redundant ones are remo-
ved from the network. After evaluating affinity and suppression, new randomly gene-
rated cells are introduced into the network, thus contributing to a broader exploration 
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of the search space. Step 2.1, which executes a local search with the k-means algorithm, 
was removed to create a second version of the algorithm for the experiments.

4 PERFORMANCE EVALUATION AND 
DISCUSSION

This section presents and discusses the experiments performed with two versions 
of the ocopt-aiNet algorithm: v

1 
with the local search procedure using k-means, and v

2 

without k-means. For comparative purposes we used two algorithms found in the lite-
rature and already cited in this work – the standard k-means and EAC (HRUSCHKA; 
CAMPELLO; CASTRO, 2006). The EAC was developed in order to automatically 
find optimal partitions of a database and the k-means algorithm is a classical partitio-
nal data clustering method.

4.1 Materials and methods

Three databases from the literature were used for comparative tests:

1.	 Animals: 16 objects each with 13 binary attributes; no missing values and no 
predefined number of clusters (HAYKIN, 1999).

2.	 Ruspini: 75 objects each with two numeric attributes and no missing value. 
This database has four clusters with 20, 23, 17 and 15 objects each, respecti-
vely (KAUFMAN; ROUSSEEUW, 1990).

3.	 Yeast: a bioinformatics dataset with 205 objects, each with 20 numerical attri-
butes and no missing values. It also has four clusters with 83, 15, 93 and 14 
objects each, respectively (YANG, 1993).

For each attribute of the databases a max-min normalization procedure was 
applied, performing a linear transformation of the original data into new values in the 
[0,1] domain. The algorithms were implemented using C# and the tests were perfor-
med on a PC AMD Turion X2 1.8 GHz, 2GB RAM, and operating system Windows 
XP Professional x64 Edition SP2. For the ocopt-aiNet algorithm the initialization pa-
rameters used for both versions were:

•	 N = 20 (initial number of cells).

•	 Nc = 10 (number of clones generated for each cell present in the network).

•	 k = 10 (initial number of clusters to be randomly generated).

•	 d = 0.001 (local stopping criterion).
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•	 D = 0.001 (global stopping criterion).

•	 w = 20 (number of iterations of the window of stability).

•	 s = 0.1 (suppression threshold).

•	 d = 10% (percentage of new individuals to be included at each iteration, based 
on the initial number of cells introduced into the network).

•	 k-means: max_it = 5 (maximum number of iterations, when used).

With the EAC algorithm the following parameters were used:

•	 N = 20 (number of individuals in the population).

•	 num_it = 5000 (maximum number of iterations).

•	 k = 10 (initial number of clusters to be randomly generated).

•	 k-means: max_it = 5 (maximum number of iterations, when used).

The k-means algorithm requires the definition of the number of partitions k to be 
used, and this number remains the same throughout the iterations. For each database 
10 executions of all algorithms were performed. For the k-means algorithm the number 
k of clusters to be used will depend on the results of EAC and ocopt-aiNet, as follows. 
If EAC and ocopt-aiNet find an average of 10 groups with standard deviation around 
two, then the k-means was tested with values of k = 8, 9, 10, 11, 12, and, for each 
value of k, 10 executions were performed.

To evaluate the partitions obtained we used the Silhouette criterion (Eq. 2). This 
function indicates the quality of the partitions obtained by the simulations of the 
algorithms. The objective function was normalized in the [0,1] range, with higher 
values representing better solutions to the clustering problem.

One goal of ocopt-aiNet is to find multiple high quality partitions of the dataset in 
a single simulation. Therefore, the adjusted rand index – ARI (KUNCHEVA; HAD-
JITODOROV, 2004; YEUNG; RUZZO, 2001) was used as a means to assess the 
diversity of the candidate solutions found by EAC and ocopt-aiNet. The index varies 
in the interval [-1,1], in which a value of 1 indicates a perfect agreement between 
partitions (maximal similarity), and negative values indicate dissimilar, diverse, candi-
date solutions (clustering partitions).

	 ARI =         Σi,j( 2 ) – [Σi( 2 ) Σj( 2 )]/( 2 )
[Σi( 2 ) + Σj ( 2 )] – [Σi( 2 ) Σj ( 2 )]/( 2 )

nij ni. n.j n

ni. n.j nni. n.j1
2

	 (5)

where i and j are any two partitions, i ≠ j; n
ij
, n

i.
, n

j
 are the number of objects in both 

partitions, in partition i and in partition j, respectively; and ( a 
b )  is the binomial co-

efficient 
a !

b !(a – b)! .
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To display the diversity it will be used the result of:

	 Di(A,B) = 1 – ARI(A,B)	 (6)

where Di(A,B) is the diversity value found for any two partitions A and B, A ≠ B, and 
ARI is the value found in the calculation of the adjusted rand index for these two par-
titions.

In addition to these measures, the mean and standard deviation of the number of 
solutions and clusters are presented. For all simulations the time was stored and is 
presented in the comparison between the algorithms.

Comparisons are made by the average values of the index used. As the EAC and 
ocopt-aiNet algorithms not always give the same solution at the end of a simulation, 
the average of all simulations is used for comparison. For the k-means, after all the 
simulations for each initial k are performed, the average of all solutions obtained is 
determined. The same procedure is performed for the ocopt-aiNet version 1 and 
version 2.

4.2 Results

This section presents the results of the experiments performed with all algorithms. 
The ocopt-aiNet algorithm in its two versions is represented by v

1
 (with k-means) and 

v
2
 (without k-means). For the Animals and Ruspini databases some resulting clusters 

are presented to illustrate the diverse solutions found by ocopt-aiNet.

4.2.1 Animals

In this database, the value of parameter k for k-means varies in the interval [3,…,7]. 
The values for the objective function in Table 1 show that the EAC has a low varia-
tion, i.e., it is always trying to approximate to the same solution. The ocopt-aiNet v

1
 

and v
2
 have higher variation than EAC, and the quality of the solutions found are 

better than the solutions found by k-means. This variation occurs due to the mainte-
nance of various solutions and these solutions still have a good quality.

Analyzing the diversity of solutions and the number of individuals generated (Ta-
ble 1), the ocopt-aiNet v

1
 and v

2
 have higher values than the other algorithms, espe-

cially the ocopt-aiNet v
2
 that found the highest values for both. Even with a high di-

versity, the ocopt-aiNet v
2
 found solutions of a good quality. The EAC presented the 

lowest number of individuals, generating only two individuals in all executions, re-
minding that this database does not have a pre-defined number of clusters.

The ocopt-aiNet v
2
 also has the highest number of clusters generated by the indi-

viduals (Table 1). This is due to the fact that the algorithm tends to keep the indivi-
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duals diversity and does not have an internal method to refine clusters (such as a local 
search in ocopt-aiNet v

1
 and EAC). However, the number of clusters is almost constant 

and similar to the best value found by EAC, suggesting that this may be the best way 
to cluster this database.

TABLE 1

Objective function, diversity of solutions, number of individuals, number of clusters and 
computational time for the animals database

Algorithms Objective function Diversity of solutions

Max Mean Min SD Max Mean Min SD
ocopt-aiNet v1 0.775 0.757 0.740 0.012 0.510 0.441 0.356 0.061
ocopt-aiNet v2 0.768 0.758 0.749 0.004 0.646 0.622 0.603 0.011
EAC 0.807 0.804 0.799 0.003 0.549 0.549 0.549 ---
k-means 0.759 0.742 0.730 0.012 0.593 0.480 0.296 0.114

Algorithms Number of individuals Number of clusters

Max Mean Min SD Max Mean Min SD
ocopt-aiNet v1 6.00 4.60 3.00 0.966 4.000 3.848 3.600 0.143
ocopt-aiNet v2 51.00 44.40 34.00 5.274 6.591 6.490 6.291 0.117
EAC 2.00 2.00 2.00 --- 6.000 4.800 2.000 1.932
k-mean --- --- --- --- 4.500 3.940 3.000 0.680

Algorithms Computational time (mm:ss)

Max Mean Min SD
ocopt-aiNet v1 00:54 00:24 00:01 00:19
ocopt-aiNet v2 01:07 00:39 00:19 00:17
EAC 01:13 00:42 00:34 00:13
k-means 00:00 00:00 00:00 ---

Source: Elaborate by the authors.

The computational time (Table 1) was the lowest for k-means, as expected, becau-
se it is the simplest algorithm of all evaluated. The EAC and ocopt-aiNet v

2
 had similar 

times. In the ocopt-aiNet v
1
 the stability was found quicker than in v

2
, because it has a 

lower number of individuals.
Table 2 illustrates the clusters found by ocopt-aiNet v

2
 in the simulation with best 

results. The table presents five solutions, one in each column, divided by the clusters 
generated (C

1
,…,C

k
; where k is the number of cluster in the solution), and the last 

row has the objective function value. By analyzing the objects’ attributes it is possible 
to observe that animals in a same cluster have similar characteristics, so the algorithm 
was capable of finding more than one way to cluster the database. It is also very im-
portant to note that although very different in granularity, the different partitions 
proposed for the dataset have practically the same objective function value. This is an 
indication that this problem is highly multimodal with various different peaks of the 
objective function with similar fitness values.
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TABLE 2

Clustering of database Animals by ocopt-aiNet v2

1 2 3 4 5

C1 C1 C1 C1 C1

Pigeon Pigeon Pigeon Pigeon Pigeon

Chicken Chicken Chicken Goose Chicken

Duck Duck Duck C2 C2

Goose Goose Goose Chicken Duck

Owl Owl Owl Duck Goose

Hawk Hawk Hawk C3 C3

Eagle Eagle Eagle Owl Owl

C2 C2 C2 Hawk Hawk

Fox Fox Fox C4 C4

Dog Dog Cat Eagle Eagle

Wolf Wolf C3 C5 C5

Cat Cat Dog Fox Fox

Tiger C3 Wolf Cat Cat

Lion Tiger C4 C6 C6

Horse Lion Tiger Dog Dog

Zebra C4 Lion Wolf Wolf

Cow Horse C5 C7 C7

Zebra Horse Tiger Tiger

C5 Zebra Lion Lion

Cow C6 C8 C8

Cow Horse Horse

Zebra Zebra

C9 C9

Cow Cow

0.79921 0.79645 0.80709 0.80001 0.80001

Source: Elaborate by the authors.

4.2.2 Ruspini

In this database, the value of parameter k for k-means varies in the interval [4,…,6]. 
The objective function values, in Table 3, show that the EAC algorithm tends to 
always find the same solution As the k-means algorithm depends on the initial condi-
tion, sometimes the centroids do not present the correct clustering. The ocopt-aiNet 
v

1
 and v

2
 algorithms also always found the correct clustering in all simulations. The 

absence of local search in ocopt-aiNetv
2
promoted a greater exploration and some solu-

tions with lower quality, but kept the average closer to the other algorithms, showing 
that the solutions still have good quality.

Analyzing the diversity of solutions and the number of individuals generated (Ta-
ble 3), the ocopt-aiNetv

1
 and v

2
 present higher values due to the maintenance of mul-
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tiple high-quality solutions. The k-means algorithm has some diversity in the solu-
tions but still lower than that of ocopt-aiNet.

The number of clusters presented in Table 3, show that the ocopt-aiNet algorithms 
(v

1
 and v

2
) perform a more exploratory search than the other algorithms. The k-means 

presented a little variation because of the interval for parameter k.

TABLE 3

Objective function, diversity of solutions, number of individuals,  
number of clusters and computational time for the Ruspini database

Algorithms
Objective function Diversity of solutions

Max Mean Min SD Max Mean Min SD

ocopt-aiNet v1 0.859 0.849 0.832 0.008 0.414 0.311 0.352 0.077

ocopt-aiNet v2 0.841 0.821 0.778 0.020 0.497 0.365 0.288 0.063

EAC 0.908 0.908 0.908 --- 0.000 0.000 0.000 ---

k-means 0.872 0.865 0.854 0.009 0.267 0.215 0.188 0.044

Algorithms
Number of individuals Number of clusters

Max Mean Min SD Max Mean Min SD

ocopt-aiNet v1 5.00 3.80 3.00 0.632 6.333 5.548 4.750 0.509

ocopt-aiNet v2 18.00 12.20 7.00 3.359 7.071 6.678 6.000 0.307

EAC 1.00 1.00 1.00 --- 4.000 4.000 4.000 ---

k-mean --- --- --- --- 5.600 4.700 3.600 1.014

Algorithms
Computational time (mm:ss)

Max Mean Min SD

ocopt-aiNet v1 01:16 00:26 00:05 00:22

ocopt-aiNet v2 05:34 01:57 00:08 02:00

EAC 02:31 02:09 01:41 00:19

k-means 00:00 00:00 00:00 ---

Source: Elaborate by the authors.

In this database, the computational time (Table 3) for ocopt-aiNetv
1
 and v

2
 algo-

rithms presented high variations. Version v
1 
stabilized more quickly than v

2
 because 

it is favored by the presence of k-means (local search). Comparing with the EAC, the 
ocopt-aiNet versions obtained better average time to global stability showing that 
the algorithms tend to quickly find good quality solutions.

Figure 8 illustrates the three different clusterings (each cluster represented by a 
different geometric shape and gray level) with highest objective function values for the 
ocopt-aiNet algorithms. It can be noted that the algorithms could find more refined 
clusters than the natural ones available in the dataset. This can be useful in databases 
in which the number of clusters is not known. Again, substantially different partitions 
lead to quite similar fitness values.
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(a) Fitness: 0.89381

(b) Fitness: 0.87405

c) Fitness: 0.87988

Figure 8 ocopt-aiNet clusterings for the Ruspini database.

Source: Elaborate by the authors.

4.2.3 Yeast

For the Yeast dataset the k-means algorithm maintained good quality solutions 
and, on average, better than the ones found by ocopt-aiNet v

1
 and v

2 
(Table 4). The 

objective function values for ocopt-aiNet were almost the same in all simulations, as 
can be noted by the low standard deviations.
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The ocopt-aiNet v
1
 and v

2
 algorithms presented higher diversity of solutions than 

EAC and k-means (Table 4). The EAC algorithm presented only one individual for all 
simulations, so there is no diversity at all. The ocopt-aiNet v

2
 found the highest num-

ber of individuals with highest diversity.
By the analysis of the number of clusters (Table 4) the ocopt-aiNet v

2
 algorithm 

performed a broader search than the other algorithms. ocopt-aiNet v
1
 and k-means 

presented similar numbers of clusters, suggesting that the best clustering found by 
k-means made ocopt-aiNet v

1
 keep its cells closer to this number of clusters. The EAC 

algorithm presented only one clustering without variation.
As the Yeast database has four known clusters, no algorithm was capable of finding 

the correct clustering for this database.

TABLE 4

Objective function, diversity of solutions, number of individuals,  
number of clusters and computational time for Yeast database

Algorithms Objective function Diversity of solutions

Max Mean Min SD Max Mean Min SD

ocopt-aiNet v1 0.782 0.762 0.742 0.011 0.559 0.380 0.255 0.104

ocopt-aiNet v2 0.759 0.737 0.704 0.017 0.519 0.397 0.269 0.078

EAC 0.841 0.841 0.841 -- 0.000 0.000 0.000 ---

k-means 0.839 0.805 0.771 0.026 0.246 0.146 0.056 0.077

Algorithms Number of individuals Number of clusters

Max Mean Min SD Max Mean Min SD

ocopt-aiNet v1 8.00 6.10 4.00 1.197 5.50 5.20 4.80 0.224

ocopt-aiNet v2 23.00 17.20 14.00 4.442 7.95 7.48 7.11 0.306

EAC 1.00 1.00 1.00 --- 3.00 3.00 3.00 ---

k-mean --- --- --- --- 5.40 4.22 2.80 0.998

Algorithms Computational time (mm:ss)

Max Mean Min SD

ocopt-aiNet v1 46:07 18:58 04:12 14:28

ocopt-aiNet v2 209:25 106:09 09:47 65:01

EAC 30:10 29:35 29:07 00:21

k-means 00:00 00:00 00:00 ---

Source: Elaborate by the authors.

The computational time (Table 4) for ocopt-aiNet v
2
 was higher in relation to 

the other algorithms, and presented a high variation among the simulations. The 
ocopt-aiNet v

1
 presented a processing time closer to the EAC algorithm, reminding 

that the EAC has as stopping criterion the number of iterations, keeping the varia-
tion low between the simulations. The k-means algorithm, as in the other analyses, 
had the lowest computational time, reaching the stability very quickly.
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4.3 General discussion

Finding diversity in a database is an important ability to support decision making 
(HAN; KAMBER, 2000), thus allowing a broader analysis of the existing relationships 
among the objects of a database. The ocopt-aiNet v

2
 algorithm, after the comparative 

results presented for the three databases, showed to be the most effective in generating 
and maintaining the diversity of solutions. Besides, the individuals found by this al-
gorithm are of good quality. In some cases, the k-means algorithm presented a better 
average quality (Yeast database), but the diversity found by k-means was lower than 
that of ocopt-aiNet v

2
.

For databases that do not have a predefined number of clusters (e.g., Animals da-
tabase), the ocopt-aiNet v

2
 algorithm presented a large number of individuals as can-

didate solutions for the clustering, differently from the other algorithms that presen-
ted a small number more frequently.

In contrast to the diversity, the ocopt-aiNet algorithm had a higher computational 
cost. However, it is important to emphasize that it is the price paid by the automatic 
search for the number of clusters, and by the maintenance of population diversity. It 
is evident that there is a balance between multimodality, dynamic search of the para-
meterization and computational efficiency. The decision of what will be privileged in 
an experiment will depend on the goal of the problem.

5 Conclusion

This work proposed two versions of a new immune algorithm for multimodal 
data clustering, called ocopt-aiNet. Both have an automatic determination of the 
number of clusters, maintenance of multiple high-quality solutions, and broad explo-
ration of the search space. The difference between them is the presence of a local 
search procedure that promotes a faster convergence at the expense of a loss in diversity.

By the results presented, it was observed that for databases with a large number of 
objects, the proposed algorithm in the version without local search (v

2
) presented a 

high computational cost when compared with its other version and algorithms. This 
results from the difficulty encountered by the algorithm to stabilize the solutions, but, 
at the same time, makes the algorithm find a larger number of solutions and, in some 
experiments, with better quality and diversity than all other algorithms.

For databases that allow multimodal high-quality solutions, such as the Animals 
and Ruspini databases, the experiments showed that the proposed algorithm, espe-
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cially the version without local search (v
2
), was able to find a high number of good-

quality solutions, benefiting the analysis of possible clustering solutions. For such 
databases, in which the number of clusters is unknown, and different clusterings are 
possible, the proposed algorithm appears to be effective.

Finally, for the cases where there is a need to find multiple solutions in a same 
database, the ocopt-aiNet algorithm has relevant results. In cases where the goal is to 
find one optimal clustering, this algorithm does not seem to be efficient due to the 
high computational cost.

As further research it is possible to detach a sensitivity analysis of the proposed 
algorithm to its input parameters, the application to a much broader set of databases 
and a more thorough comparison with other approaches from the literature.

OCOPT-AINET: UM SISTEMA IMUNOLÓGICO ARTIFICIAL  
PARA AGRUPAMENTO ÓTIMO DE DADOS

Resumo
Agrupamento de dados é uma importante tarefa da mineração de dados. Boa 

parte dos algoritmos pode agrupar os objetos de forma simples e eficiente, mas possui 
inconvenientes como a forma de obter o número ótimo de grupos e a possibilidade de 
ficar preso em ótimos locais. Para tentar diminuir esses inconvenientes, este artigo 
propõe um novo algoritmo imunológico para agrupamento de dados baseado em 
sistemas imunológicos artificiais. Esse algoritmo é caracterizado pela geração de múl-
tiplas soluções simultâneas de boa qualidade no que tange ao número de grupos e a 
uma função de custo que avalia explicitamente a qualidade desses grupos, minimizan-
do o inconveniente de ficar preso em ótimos locais.

Palavras-chave: Sistemas imunológicos artificiais, agrupamento de dados, 
ocopt-aiNet.
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